玻璃钢/复合材料 ›› 2017, Vol. 0 ›› Issue (9): 19-24.

• 基础研究 • 上一篇    下一篇

纤维增强复合材料疲劳性能的温度效应

谢桂华,卞玉龙,唐永生,冯倩红   

  1. 江苏大学土木工程与力学学院,镇江212013
  • 收稿日期:2017-04-21 出版日期:2017-09-28 发布日期:2017-09-28
  • 作者简介:谢桂华(1976-),女,博士,副教授,主要从事高性能复合材料应用方面的研究,jg97xieguihua@163.com。
  • 基金资助:
    国家自然科学基金资助项目(51508235);江苏省自然科学基金(BK20140553)

TEMPERATURE EFFECT ON FATIGUE PERFORMANCE OF FIBER-REINFORCED POLYMER

XIE Gui-hua, BIAN Yu-long, TANG Yong-sheng, FENG Qian-hong   

  1. Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang 212013, China
  • Received:2017-04-21 Online:2017-09-28 Published:2017-09-28

摘要: 纤维增强复合材料(FRP)因其轻质高强、耐腐蚀等突出优势受到广泛的关注,但其疲劳性能受材料特性、环境条件和载荷条件影响较大。基于唯象学刚度退化理论,研究了FRP材料的疲劳性能在不同温度和应力水平下的变化规律,推导了FRP材料基于温度变化的刚度退化和疲劳寿命预测等效模型,并在已有试验数据基础上对该模型进行了验证,并将之应用于E型玻璃纤维平纹编织层状材料的疲劳性能预测。结果表明:该模型能有效预测FRP材料的刚度退化规律和等效剩余疲劳寿命;FRP材料疲劳性能的温度效应明显,其影响程度甚至可能超过应力幅的影响。

关键词: 纤维增强复合材料, 疲劳性能, 温度效应, 刚度退化

Abstract: Fiber Reinforced Polymer (FRP) has attracted much attention due to its high strength to weight ratio, strong resistance to chemical corrosion, while its anti-fatigue property varies with material characteristics, ambient environmental conditions and loading status. In this study, the performance of FRP on anti-fatigue was studied under different temperatures and loading stress level according to the phenomenology-based macro mechanical theories, and an equivalent model was proposed to estimate and predict the stiffness degradation and residue fatigue life of FRP under the synergy effect of temperature and fatigue stress level. Based on the experimental data, the verification of the model was carried out. The verified model was applied to predict the fatigue performance of the E-glass plain-weave fabric laminate. It is shown that the suggested model may efficiently predict the stiffness degradation and equivalent residue fatigue life of FRP. The temperature effect on fatigue property of FRP is obvious and this effect may even be more evident than that of the stress amplitude for FRP.

Key words: FRP, fatigue performance, temperature effect, stiffness degradation

中图分类号: