玻璃钢/复合材料 ›› 2017, Vol. 0 ›› Issue (9): 5-12.

• 基础研究 •    下一篇

纤维增强复合材料梁的分层损伤识别

詹超1,马晓静2,张芝芳1*   

  1. 1.广州大学-淡江大学工程结构灾害与控制联合研究中心,广州510006;
    2.广东工商职业学院,肇庆526020
  • 收稿日期:2017-06-05 出版日期:2017-09-28 发布日期:2017-09-28
  • 通讯作者: 张芝芳(1985-),女,博士,助理研究员,主要从事复合材料损伤识别和健康监测方面的研究,zfzhang@gzhu.edu.cn。
  • 作者简介:詹超(1992-),男,硕士生,主要从事复合材料损伤识别的研究。
  • 基金资助:
    广东省自然科学基金项目(2016A030310261);广东省科技计划项目(2016B050501004);广州市属高校科技计划项目(1201431041)

VIBRATION-BASED DELAMINATION ASSESSMENT IN FIBER REINFORCED POLYMER BEAMS

ZHAN Chao1, MA Xiao-jing2, ZHANG Zhi-fang1*   

  1. 1.Guangzhou University-Tamkang University Joint Research Center for Engineering Structure Disaster Prevention and Control, Guangzhou 510006, China;
    2.Guangdong College of Business and Technology, Zhaoqing 526020, China
  • Received:2017-06-05 Online:2017-09-28 Published:2017-09-28

摘要: 通过损伤发生前后结构频率的变化来检测和评估纤维增强复合材料(FRP)层合梁中的分层损伤。利用FRP层合梁在分层发生前后的一系列频率变化值,通过构建直观图像法和人工神经网络两种逆向算法反推出梁中分层损伤的三个参数,即分层所在的界面、位置和尺寸。为检验两种算法的有效性和识别精度,分别进行了理论和实验双重验证。理论验证结果表明,两种逆向检测算法都可以有效预测出分层损伤的三个参数,其中直观图像法相比人工神经网络预测精度更高。而实验验证采用文献中报道的实测频率,结果表明:直观图像法对于测量数据误差有更高的包容性,可以较为准确地预测出分层在FRP梁试件中的位置和大小;而人工神经网络对于实验误差相对敏感,对FRP梁试件中的分层损伤预测不够准确。综上认为,相较于人工神经网络,直观图像法具有更好的鲁棒性,应被优先选择应用于FRP梁的分层损伤识别。

关键词: 纤维增强复合材料梁, 分层, 损伤识别, 直观图像法, 人工神经网络

Abstract: Delaminations in fiber reinforced polymer (FRP) beams were detected and assessed through the changes in natural frequencies before and after the damage occurred in beams. To assess the three delamination parameters, namely, the interface, lengthwise location and size, two different inverse algorithms, i.e. graphical technique and artificial neural network (ANN), were developed to inversely predict the delamination from a series of known frequency shifts. To verify the prediction efficiency and accuracy of the inverse algorithms, both numerical and experimental validation were conducted and the results were compared. The numerical validation results show that both algorithms can predict the delamination parameters successfully, although the accuracy of the graphical technique is noticed to be higher than that of the ANN. Experimental validation using the measured frequencies in literature shows that the graphical technique can predict the delamination with satisfactory accuracy using the measured frequencies which is noise polluted, while ANN is very sensitive to the experimental errors and can hardly predict the delamination with experimental data. In conclusion, it is recommended to use the graphical technique rather than artificial neural network to assess the delamination in FRP beam through frequency shifts.

Key words: FRP beam, delamination, damage detection, graphical technique, artificial neural network

中图分类号: