玻璃钢/复合材料 ›› 2018, Vol. 0 ›› Issue (1): 60-67.
侯慧宁, 周新贵, 李明远
收稿日期:
2017-10-09
出版日期:
2018-01-20
发布日期:
2018-01-20
作者简介:
侯慧宁(1992-),女,硕士,主要从事陶瓷基复合材料方面的研究,hhn_cathy@163.com。
基金资助:
HOU Hui-ning, ZHOU Xin-gui, LI Ming-yuan
Received:
2017-10-09
Online:
2018-01-20
Published:
2018-01-20
摘要: 针对电泳沉积结合先驱体浸渍裂解的方法制备SiCf/SiC复合材料过程,探讨沉积时间对SiC纤维及SiCf/SiC复合材料性能的影响规律。实验结果得出:随电泳沉积时间的延长,SiC纤维逐渐被腐蚀,致使其单丝强度下降;而在SiC纤维表面覆盖PyC涂层可以有效地保护SiC纤维,由于悬浮液中的通电作用,PyC涂层与SiC纤维的界面结合强度略有降低,纤维单丝强度随电泳时间的延长先增大后减小。5 min的电泳沉积结合9个周期的PIP得到了SiCf/SiC复合材料最大的弯曲强度为731 MPa,随后其力学性能随着沉积时间的延长先降低后略微回升;SiCf/SiC复合材料的热导率随沉积时间的延长先增大后减小,10 min电泳沉积得到了常温下SiCf/SiC复合材料的最大热导率为4.658 W/(m·K)(25 ℃)。
中图分类号:
侯慧宁, 周新贵, 李明远. 电泳沉积时间对SiCf/SiC复合材料性能的影响[J]. 玻璃钢/复合材料, 2018, 0(1): 60-67.
HOU Hui-ning, ZHOU Xin-gui, LI Ming-yuan. INFLUENCE OF ELECTROPHORETIC DEPOSITION TIME ON SiCf/SiC COMPOSITES PROPERTIES[J]. Fiber Reinforced Plastics/Composites, 2018, 0(1): 60-67.
[1] 石德珂. 材料科学基础(第2版)[M]. 北京: 机械工业出版社, 2003. [2] Kim T T. Thermo-mechanical characterization of silicon carbide-silicon carbide composites at elevated temperatures using a unique combustion facility[J]. Dissertations & Theses-Gradworks, 2009. [3] D. Anson, D. W. Richerson. The benifits and challenges of the use of ceramics in gas turbines. In: M. van. Roode, M. K. Ferber, D. W. Richerson, eds. Ceramic Gas Turbine Component Development and Characterization[M]. New York: ASME press, 2002. [4] Zinkle S J, Snead L L. Designing radiation resistance in materials for fusion energy[J]. Annual Review of Materials Research, 2014, 44(1): 241-267. [5] Katoh Y, Snead L L, Jr C H H, et al. Current status and critical issues for development of SiC composites for fusion applications[J]. Journal of Nuclear Materials, 2007, s 367-370(5): 659-671. [6] Taylor N P, Forrest R A. Neutronic aspects of the safety and environmental performance of silicon carbide as blanket structural material[J]. Fusion Engineering & Design, 2001, 54(3): 617-625. [7] Jones R H, Steiner D, Heinisch H L, et al. Radiation resistant ceramic matrix composites[J]. Journal of Nuclear Materials, 1997, 245(2-3): 87-107. [8] Sawan M, Sharpe P, Smolentsev S. Overview of fusion nuclear technology in the US[J]. Fusion Engineering & Design, 2006, 81(1): 33-43. [9] Nozawa T, Hinoki T, Hasegawa A, et al. Recent advances and issues in development of silicon carbide composites for fusion applications[J]. Journal of Nuclear Materials, 2010, 41(17): 622-627. [10] R. W. Rice, S. W. Freiman, P. F. Bencher. Grain-size dependence of fracture energyin ceramic: I, Experiment [J]. Journal of American Ceramic Society, 1981, 64(6): 345-350. [11] Eaton H E, Linsey G D, More K L, et al. EBC protection of SiC/SiC composites in the gas turbine combustion environment[C]. 2001: V004T02A018-V004T02A018. [12] Roode M V. Ceramic gas turbine development: Need for a 10-year plan[J]. Journal of Engineering for Gas Turbines & Power, 2010, 132(1): 279-288. [13] Roode M V, Price J, Kimmel J, et al. Ceramic matrix composite combustor liners: a summary of field evaluations[J]. Journal of Engineering for Gas Turbines & Power, 2005, 129(1): 283-292. [14] Langenbrunner N, Weaver M, Dunn M G, et al. Dynamic response of a metal and a CMC turbine blade during a controlled rub event using a segmented shroud[J]. Journal of Engineering for Gas Turbines & Power, 2015, 137(6). [15] Sayano A, Sutoh C, Suyama S, et al. Development of a reaction-sintered silicon carbide matrix composite[J]. Journal of Nuclear Materials, 1999, 271-272(5): 467-471. [16] Snead L L, Jones R H, Kohyama A, et al. Status of silicon carbide composites for fusion[J]. Journal of Nuclear Materials, 1996, s 233-237(96): 26-36. [17] Nannetti C A, Ortona A, Pinto D A D, et al. Manufacturing SiC-fiber-reinforced SiC matrix composites by improved CVI/slurry infiltration/polymer impregnation and pyrolysis[J]. Journal of the American Ceramic Society, 2004, 87(7): 1205-1209. [18] Novak S, Rade K, Knig K, et al. Electrophoretic deposition in the production of SiC/SiC composites for fusion reactor applications[J]. Journal of the European Ceramic Society, 2008, 28(14): 2801-2807. [19] Novak S, Draic′ G, Knig K, et al. Preparation of SiCf/SiC composites by the slip infiltration and transient eutectoid (SITE) process[J]. Journal of Nuclear Materials, 2010, 399(2): 167-174. [20] Yin J, Lee S H, Feng L, et al. Fabrication of SiCf/SiC composites by hybrid techniques of electrophoretic deposition and polymer impregnation and pyrolysis[J]. Ceramics International, 2016, 42(14): 16431-16435. [21] A. Ivekovic, G. Drazic, S. Novak. Densification of a SiC-matrix by electrophoretic deposition and polymer infiltration and pyrolysis process [J]. Journal of the European Ceramic Society, 2011, (31): 833-840. [22] S. Novak, A. Ivekovic. Fabrication of SiCf/SiC composites by SITE-P process [J]. Journal of Nuclear Materials, 2012, (427): 110-115. [23] A. Ivekovic′, S. Novak. Electrophoretic (Infiltration) deposition of thick conductive fiber preforms[J]. Journal of the Electrochemical Society, 2015, 162(11): D3049-D3056. [24] Partho Sarkar, Patrick S. Nicholson. Electrophoretic deposition (EPD): mechanisms, kinetics, and application to ceramics[J]. Journal of the American Ceramic Society, 1996, 79(8): 1987-2002. [25] Stoll E, Mahr P, Krüger H G, et al. Fabrication technologies for oxide-oxide ceramic matrix composites based on electrophoretic deposition[J]. Journal of the European Ceramic Society, 2006, 26(9): 1567-1576. |
[1] | 宫唯康, 刘晓阳, 荆玉才, 项俊宁, 李相国, 杨国涛. 预应力CFRP板加固钢-混凝土组合梁受弯性能的有限元分析[J]. 复合材料科学与工程, 2022, 0(7): 11-19. |
[2] | 赵雄翔, 孙鹏文, 李建东. 基于应变能的风力机叶片铺层结构优化设计[J]. 复合材料科学与工程, 2022, 0(7): 20-24. |
[3] | 常腾飞, 湛利华, 李树健, 潘阳. 不同成型方法的树脂基复合材料帽形结构共固化成型质量研究[J]. 复合材料科学与工程, 2022, 0(7): 32-38. |
[4] | 王雅娜, 赵魏. 复合材料Ⅱ型分层ENF试验数据处理方法对比分析[J]. 复合材料科学与工程, 2022, 0(7): 81-92. |
[5] | 何靓, 朱攀星, 俆小伟, 王金云. 复合材料残余应力与固化变形机理及控制研究进展[J]. 复合材料科学与工程, 2022, 0(7): 121-128. |
[6] | 闫金顺, 孙鹏文, 马志坤, 赵雄翔, 董新洪. 幂函数过滤函数不同参数对层合板拓扑优化收敛率的影响[J]. 复合材料科学与工程, 2022, 0(6): 5-9. |
[7] | 吴毅彬, 许丽华, 金国芳, 欧永辉. 基于Weibull分布函数的FRP退化模型研究[J]. 复合材料科学与工程, 2022, 0(6): 10-16. |
[8] | 杨智勇, 刘清念, 孙建波, 解永杰, 左小彪, 张建宝. 铺层角度偏差对曲面复合材料层合板形面轮廓的影响分析[J]. 复合材料科学与工程, 2022, 0(6): 17-26. |
[9] | 黄东辉, 曾少华. 氨基化石墨烯-玻璃纤维增强环氧复合材料的界面黏合性研究[J]. 复合材料科学与工程, 2022, 0(6): 27-32. |
[10] | 唐永明, 郭晓云, 陈杰. 不同端部锚固FRP-砌体界面黏结性能试验研究[J]. 复合材料科学与工程, 2022, 0(6): 33-40. |
[11] | 门树林, 张健敏, 高志浩, 温荣严, 骆林, 崔笑晨. 碳纤维与聚酰胺自增强复合材料协同增强体系的制备及其性能研究[J]. 复合材料科学与工程, 2022, 0(6): 41-46. |
[12] | 肖鹏, 李秀琴, 冯霞, 张蓓蓓, 李博轩. BP-GO-AgNPs复合粉末添加量对BP-GO-AgNPs复合涂层抑菌性能的影响[J]. 复合材料科学与工程, 2022, 0(6): 47-52. |
[13] | 赵宝艳, 陈丽娜, 张利, 包锦标. 填料/基体三维氢键网络提升PHBV复合材料力学性能[J]. 复合材料科学与工程, 2022, 0(6): 53-58. |
[14] | 刘雅奇, 刘运浩, 李普旺, 王超, 宋书会, 杨子明. 菠萝叶纤维增强热塑性淀粉复合材料的性能研究[J]. 复合材料科学与工程, 2022, 0(6): 59-64. |
[15] | 史启通, 李冰, 冯聪, 明平文, 张存满. 基于显微CT技术的碳纸微观结构特征分析[J]. 复合材料科学与工程, 2022, 0(6): 65-69. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||