[1] 伍文艳, 刘强, 吴良军. 不同工艺碳纤维增强复合材料构件的力学性能[J]. 玻璃钢/复合材料, 2017(10): 23-28. [2] 杨忠敏. 复合材料-未来汽车材料的发展主流[J]. 化学工业, 2014, 32(9) : 44-50. [3] Hong S K, Sang S A, Li H, et al. Charpy impact fracture characteristics of CFRP composite materials according to various of fiber arry direction and temperature[J]. International Journal of Precision Engineering and Manufacturing, 2013, 14(2) : 253-258. [4] Korayem A H, Li C Y, Zhang Q H, et al. Effect of carbon nanotube modified epoxy adhesive on CFRP-to-steel interface[J]. Composites Part B, 2015, 79: 95-104. [5] Han Q H, Wang L C, Xu J. Experimental research on mechanical properties of transverse enhanced and high-temperature-resistant CFRP tendons for prestressed structure[J]. Construction and Building Materials, 2015, 98 : 864-874. [6] 冯永忠, 康永禄. 宝马新7系车身概览[J]. 汽车维修与保养, 2016(3):75-77. [7] Wang H T, Wu G, Dai Y T, et al. Determination of the bond-slip behavior of CFRP-to-steel bonded interfaces using digital image correlation[J]. Journal of Reinforced Plastics and Composites, 2016, 35(18): 1353-1367. [8] Kahlmeyer M, Bhm B. Crash-modified two-component adhesives for joining CFRP and aluminium in automotive body in white[J]. Weld World, 2016, 60: 767-776. [9] Gao Y, Dong S L, Wang H S, et al. Effect of vacuum thermal cycling on mechanical and physical properties of an epoxy matrix com-posite[J]. Advanced Materials Research, 2012, 415-417: 2236-2239. [10] Gao Y, Dong S L, He S, et al. Characterization of stress distribution and thermal expansion behavior for M40J/AG-80 composites experienced vacuum thermo-cycling[J]. Journal of Reinforced Plastics and Composites, 2006, 25(16): 1647-1657. [11] 傅惠民, 杨雨松, 张勇波. 国产碳纤维CCF300与T300碳纤维复合材料拉伸载荷下的失效模式分析[J]. 航空动力学报, 2010, 25(10): 2163-2169. [12] 余治国, 杨胜春, 宋笔锋. T700和T300碳纤维增强环氧树脂基复合材料耐湿热老化性能的对比[J]. 机械工程材料, 2009, 3(6): 48-51. [13] 黄业青, 张康助, 王晓洁. T700碳纤维复合材料耐湿热老化研究[J]. 高科技纤维与应用, 2006, 31(3): 19-21. [14] 王世明. 温度与湿度环境对碳纤维复合材料力学行为的影响研究 [D]. 南京: 南京航空航天大学, 2011. [15] 何先成, 钟翔屿, 李晔. RTM工艺成型国产T700碳纤维复合材料湿热性能[J]. 高科技纤维与应用, 2016, 41(6): 47-52, 56. |