[1] 黄诚, 刘德博, 吴会强, 等. 我国航天运载器复合材料贮箱应用展望[J]. 沈阳航空航天大学学报, 2016, 33(2): 27-35. [2] John Vickers. Composites australia conference composite cryotank project structures for launch vehicles[J]. NASA Marshall Space Flight Center March 5, 2013. [3] 王荣国, 矫维成, 刘文博, 等. 轻量化复合材料压力容器研究进展[J]. 航空制造技术, 2009(15): 86-89. [4] Radtke W. Novel manufacturing methods for titanium tanks and liners[C]//AIAA/ASME/SAE/ASEE JOINT Propulsion Conference & Exhibit. 2006. [5] Wei R, Wang X, Chen C, et al. Effect of surface treatment on the interfacial adhesion performance of aluminum foil/CFRP laminates for cryogenic propellant tanks[J]. Materials & Design, 2017, 116: 188-198. [6] 张锡昌, 居筱曼. 碳纤维/环氧复合材料典型铺层的热膨胀系数及其复合计算[J]. 材料工程, 1987(6): 17-22. [7] Morison W L, Momtaz K, Mosher D B, et al. Analysis of potential Ti-Liner buckling after proof in Kevlar/epoxy COPV[C]// AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. 2006: 231-233. [8] Mallick K, Cronin J, Arzberger S, et al. Ultralight linerless composite tanks for in-space applications[C]//Space 2004 Conference and Exhibit. 2013. [9] Seal E C, Elfer N C, Brandt T, et al. High performance, thin metal lined, composite overwrapped pressure vessel: US, US 6401963 B1[P]. 2002. [10] Fikes J C. Composite cryotank technolo-gies and demonstration[J]. Records of the Australian Museum, 2011. [11] Stokes E H. Hydrogen permeability of polymer based composite tank material under tetra-axial strain[C]//5th conference on aerospace materials, processes,and environmental technology. Huntsville, Alabama: 2002. [12] Flanagan M, Grogan D M, Goggins J, et al. Permeability of carbon fibre PEEK composites for cryogenic storage tanks of future space launchers[J]. Composites Part A Applied Science & Manufacturing, 2017, 101: 173-184. [13] Humpenöder J. Gas permeation of fibre reinforced plastics[J]. Cryogenics, 1998, 38(1): 143-147. [14] Schulthei D. Permeation barrier for lightweight liquid hydrogen tanks[D]. University Augsburg, 2007. [15] Choi S, Sankar BV. Gas permeability of various graphite/epoxy composite laminates for cryogenic storage systems[J]. Compos B Eng, 2008, 39(5): 782-791. [16] Peddiraju P, Popov P, Lagoudas D C, et al. IMECE2003-42908 Characterization of effective permeability of cryogenic composite laminates[J]. Hal Archives, 2003. [17] Laeuffer H, Arbaoui J, Bois C, et al. A new device to measure perme-ability evolution under pressure loading: Application to CFRP pipes[J]. Measurement, 2017, 98: 68-76. [18] 刘萝威. 复合材料低温贮箱的开发与应用[J]. 飞航导弹, 2006(3): 59-62. [19] 黄诚, 雷勇军. 大型运载火箭低温复合材料贮箱设计研究进展[J]. 宇航材料工艺, 2015, 45(2): 1-7. [20] Bechel V T, Negilski M, James J. Limiting the permeability of composites for cryogenic applications[J]. Composites Science & Technology, 2006, 66(13): 2284-2295. [21] Yokozeki T, Aoki T, Ogasawara T, et al. Effects of layup angle and ply thickness on matrix crack interaction in contiguous plies of composite laminates[J]. Composites Part A Applied Science & Manufacturing, 2005, 36(9): 1229-1235. [22] 矫维成, 牛越, 丁国民, 等. 高气体阻隔石墨/环氧纳米复合材料的可控制备[J]. 中国科技论文, 2015, 10(10): 1149-1153, 1157. [23] Miller S, Meador M. Polymer-Layered Silicate Nanocomposites for Cryotank Applications[C]//48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. 2007. [24] Timmerman J F, Hayes B S, Seferis J C. Nanoclay reinforcement effects on the cryogenic microcracking of carbon fiber/epoxy composites[J]. Composites Science & Technology, 2002, 62(9): 1249-1258. [25] Chang C H, Huang T C, Peng C W, et al. Novel anticorrosion coatings prepared from polyaniline/graphene composites[J]. Carbon, 2012, 50(14): 5044-5051. [26] Xie X L, Mai Y W, Zhou X P. Dispersion and alignment of carbon nanotubes in polymer matrix: A review[J]. Polymeric Materials Science & Engineering, 2005, 49(4): 89-112. [27] Compton O C, Kim S, Pierre C, et al. Crumpled graphene nanosheets as highly effective barrier property enhancers[J]. Advanced Materials, 2010, 22(42): 4759-4763. [28] 张佳佳, 张晓朦, 李姜, 等. 聚丙烯/蒙脱土和聚丙烯/石墨烯交替多层材料的结构与气体阻隔性能[J]. 高分子材料科学与工程, 2017, 33(9): 35-38. [29] Feng Q P, Liu Y, Deng Y H, et al. Enhanced cryogenic interfacial normal bond property between carbon fibers and epoxy matrix by carbon nanotubes[J]. Composites Science & Technology, 2014, 104: 59-65. [30] Jiao W, Shioya M, Wang R, et al. Improving the gas barrier properties of Fe3O4/graphite nanoplatelet reinforced nanocomposites by a low magnetic field induced alignment[J]. Composites Science & Technology, 2014, 99(4): 124-130. [31] 宣兆龙, 易建政, 段志强, 等. 环氧树脂的增韧改性研究[J]. 玻璃钢/复合材料, 2004(1): 24-27. [32] Zhao Y, Chen Z K, Liu Y, et al. Simultaneously enhanced cryogenic tensile strength and fracture toughness of epoxy resins by carboxylic nitrile-butadiene nano-rubber[J]. Composites Part A, 2013, 55(23): 178-187. [33] Sawa F, Nishijima S, Okada T. Molecular design of an epoxy for cryogenic temperatures[J]. Cryogenics, 1995, 35(11): 767-769. [34] Shang C Y, Wang X, Wang J, et al. Research on low temperature properties and toughness of epoxy resins modified with flexible side chain[J]. Journal of Wuhan University of Technology, 2009, 31(19): 41-44. [35] 杨果, 潘勤彦, 潘皖江, 等. 柔性胺改性剂对环氧树脂力学性能的影响[J]. 材料工程, 2006(5): 16-20, 24. [36] 初增泽, 黄鹏程. 环氧树脂的超低温增韧研究[J]. 热固性树脂, 2004, 19(3): 1-4. [37] 初增泽, 黄鹏程. 聚醚砜改性对环氧树脂室温和超低温韧性及力学性能的影响[J]. 高分子材料科学与工程, 2005(4): 228-231. [38] Su X, Abdi F, Ran K. A study of ply thickness and angle designs for preventing permeability of the IM7/977-2 polymer composite cryogenic tank[C]//Aiaa/asme/asce/ahs/asc Structures, Structural Dynamics, and Materials Conference, Aiaa/asme/ahs Adaptive Structures Conference. 2013. [39] Kumazawa H, Aoki T, Susuki I. Influence of stacking sequence on leakage characteristics through CFRP composite laminates[J]. Composites Science & Technology, 2006, 66(13): 2107-2115. [40] Mc Manus H L, Faust A, Uebelhart S. Gas permeability of thermallycycled graphite-epoxy composites[C]//Proceedings of the American Society for composites-16th technical conference. 2001. |