[1] 郑国栋, 张清杰, 邓火英, 等. 不同官能化碳纳米管对MWCNTs-碳纤维/环氧树脂复合材料力学性能的影响 [J]. 复合材料学报, 2015, 32(3): 640-648. [2] Gohardani O, Elola M C, Elizetxea C. Potential and prospective implementation of carbon nanotubes on next generation aircraft and space vehicles: A review of current and expected applications in aer-ospace sciences[J]. Progress in Aerospace Sciences, 2014, 70: 42-68. [3] Karger-Kocsis J, Mahmood H, Pegoretti A. Recent advances in fiber/matrix interphase engineering for polymer composites[J]. Progress in Materials Science, 2015, 73: 1-43. [4] Zhang Q J, Liang S, Sui G, et al. Influence of matrix modulus on the mechanical and interfacial properties of carbon fiber filament wound composites[J]. Rsc Advances, 2015, 32(5): 25208-25214. [5] Domun N, Hadavinia H, Zhang T, et al. Improving the fracture toughness and the strength of epoxy using nanomaterials-a review of the current status[J]. Nanoscale, 2015, 23(7): 10294-10329. [6] 赫玉欣,张丽,朱伸兵,等. 碳纳米管的表面改性对环氧树脂低温(77 K)冲击性能及热膨胀系数的影响 [J]. 复合材料学报, 2012, 29(4): 56-62. [7] Chen Z, Dai X J, Magniez K, et al. Improving the mechanical properties of multiwalled carbon nanotube/epoxy nanocomposites using polymerization in a stirring plasma system[J]. Composites Part A, 2014, 56(1): 172-180. [8] Feng Q , Liu Y, Deng Y, et al. Enhanced cryogenic interfacial normal bond property between carbon fibers and epoxy matrix by carbon nanotubes[J]. Composites Science & Technology, 2014, 104: 59-65. [9] Pal G, Kumar S. Modeling of carbon nanotubes and carbon nanotube-polymer composites[J]. Progress in Aerospace Sciences, 2016, 80: 33-58. [10] Chen X, Zhang L, Zheng M, et al. Quantitative nanomechanical characterization of the van der Waals interfaces between carbon nanotubes and epoxy[J]. Carbon, 2015, 82: 214-228. [11] Xiong Q, Meguid S, Wang Y, et al. Molecular dynamics and atomistic based continuum studies of the interfacial behavior of nanoreinforced epoxy [J]. Mechanics of Materials, 2015, 85: 38-46. [12] Shokuhfar A, Arab B. The effect of cross linking density on the mechanical properties and structure of the epoxy polymers: molecular dynamics simulation[J]. Journal of molecular modeling, 2013, 19(9): 3719-3731. [13] Masoumi S, Arab B, Valipour H. A study of thermo-mechanical properties of the cross-linked epoxy: An atomistic simulation[J]. Polymer, 2015, 70: 351-360. [14] Zhang W Q, Yang Q, Zhong W H, et al. Mechanism of modulus improvement for epoxy resin matrices: A molecular dynamics simulation[J]. Reactive & Functional Polymers, 2017, 111: 60-67. [15] Yang S, Qu J. Computing thermomechanical properties of crosslinked epoxy by molecular dynamic simulations[J]. Polymer, 2012, 53(21): 4806-4817. [16] Alian A R, Meguid S A. Large-scale atomistic simulations of CNT-reinforced thermoplastic polymers[J]. Composite Structure, 2018, 191: 221-230. [17] 李浩, 张清杰, 高亮, 等. 环氧树脂高低温弹性模量的分子模拟和实验研究[J].玻璃钢/复合材料, 2016(8): 33-37 . |