[1] Xiangyi Geng, Mingshun Jiang, Linlin Gao, et al. Sensing characteristics of FBG sensor embedded in CFRP laminate[J]. Measurement, 2017, 98(4): 199-204. [2] Sophia N Economidou, Dimitris Karalekas. Optical sensor-based measurements of thermal expansion coefficient in additive manufacturing[J]. Polymer testing, 2016, 51(4): 117-121. [3] 翟保利. 紫外光快速固化乙烯基酯树脂及其复合材料研究[D]. 武汉: 武汉理工大学, 2007. [4] Sorensen L, Gmür T, Botsis J. Residual strain development in an AS4/PPS thermoplastic composite measured using fibre Bragg grating sensors[J]. Composites Part A, 2006, 37(2): 270-281. [5] P P Parlevliet, H E N Bersee, A Beukers. Residual stresses in thermoplastic composites, a study of the literature-Part Ⅰ: Formation of residual stresses[J]. Composites Part A, 2006, 37(11): 1847-1857. [6] Loleï Khoun, Rui de Oliveira, Véronique Michaud, et al. Investigation of process-induced strains development by fibre Bragg grating sensors in resin transfer moulded composites[J]. Composites part A, 2011, 42(3): 274-282. [7] G Pereira, M McGugan, L P Mikkelsen. Method for independent strain and temperature measurement in polymeric tensile test specimen using embedded FBG sensors[J]. Polymer testing, 2016, 50(4): 125-134. [8] Tomasz Garstka, N Ersoy, K D Potter, et al. In situ measurements of through-the-thickness strains during processing of AS4/8552 composite[J]. Composite part A, 2007, 38(12): 2517-2526. [9] M Mulle, H Wafai, A Yudhanto, et al. Process monitoring of glass reinforced polypropylene laminates using fiber Bragg gratings[J]. Composites science and technology, 2016, 123(4): 143-150. [10] 孙九霄. 基于布拉格光栅传感器的复合材料固化及冲击损伤监测研究[D]. 武汉: 武汉理工大学, 2011. [11] 田恒. 基于FBG传感器的碳纤维复合材料固化残余应力研究[D]. 武汉: 武汉理工大学, 2012. [12] P P Parlevliet, H E N Bersee, A Beukers. Residual stresses in thermoplastic composites, a study of the literature-Part Ⅱ: Formation of residual stresses[J]. Composites Part A, 2007, 38(3): 651-665. [13] A Suzuki, T Sugimura, T Kunugi. Mechanical properties and superstructure of isotactic polypropylene fibers prepared by continuous vibrating zone-drawing[J]. Journal of applied polymer science, 2001, 81(4): 600-608. [14] Leng J S, Asundi A. Real-time cure monitoring of smart composite materials using extrinsic Fabry-Perot interferometer and fiber Bragg grating sensors[J]. Smart Mater Struct, 2002, 4(2): 249-251. [15] Jung K, Jin Kang T. Cure monitoring and internal strain measurement of 3-D hybrid braided composites using fiber Bragg grating sensor[J]. J Compos Mater, 2007, 41(12): 1499-1519. [16] Khoun L, Hubert P. Cure shrinkage characterization of an epoxy resin system by two in situ measurement methods[J]. Polym Compos, 2010, 31(9): 1603-1610. [17] M Giordano, A Laudati, J Nasser, et al. Monitoring by a single fiber Bragg grating of the process induced chemo-physical transformations of a model thermoset[J]. Sensor Actuators A, 2004, 113(2): 166-173. [18] Philippe A Olivier. A note upon the development of residual curing strains in carbon/epoxy laminates. Study by thermomechanical analysis[J]. Composites part A, 2006, 37(4): 602-616. [19] Susann Hannuscha, Martin Stockmanna, Jörn Ihlemanna. Experimental method for residual stress analysis with fibre Bragg grating sensors[J]. Materials Today, 2006, 3(4): 979-982. [20] Haixiao Hu, Shuxin Li, Jihui Wang, et al. FBG-based real-time evaluation of transverse cracking in cross-ply laminates[J]. Composite structures, 2016, 138(4): 151-160. [21] Nanya Li, Yingguang Li, Xiaozhong Hao, et al. A comparative experiment for the analysis of microwave and thermal process induced strains of carbon fiber/bismaleimide composite materials[J]. Composites science and technology, 2015, 106(106): 15-19. [22] Nanya Li, Yingguang Li, Xiang Hang, et al. Analysis and optimi-zation of temperature distribution in carbon fiber reinforced composite materials during microwave curing process[J]. Journal of materials processing technology, 2014, 214(3): 544-550. |