[1]Holmes G A, Rice K, Snyder C R. Ballistic fibers: A review of the thermal, ultraviolet and hydrolytic stability of the benzoxazole ring structure[J]. Journal of Materials Science, 2006, 41(13): 4105-4116. [2]Hu X D, Jenkins S E, Min B G, et al. Rigid-rod polymers: synthesis, processing, simulation, structure, and properties[J]. Macromolecular Materials and Engineering, 2003, 288(11): 823-843. [3]Kitagawa T, Yabuki K, Young R J. An investigation into the relationship between processing, structure and properties for high-modulus PBO fibres. Part 1. Raman band shifts and broadening in tension and compression[J]. Polymer, 2001, 42(5): 2101-2112. [4]Wu G M, Shyng Y T. Surface modification and interfacial adhesion of rigid rod PBO fibre by methanesulfonic acid treatment[J]. Composites Part A Applied Science & Manufacturing, 2004, 35(11): 1291-1300. [5]Wu G M, Shyng Y T. Effects of basic chemical surface treatment on PBO and PBO fiber reinforced epoxy composites[J]. Journal of Polymer Research, 2005, 12(2): 93-102. [6]So Y H. Rigid-rod polymers with enhanced lateral interactions[J]. Progress in Polymer Science, 2000, 25(1): 137-157. [7]Jian M J, Hui J Z, Li G, et al. Poly (p-phenylene benzoxazole) fiber chemically modified by the incorporation of sulfonate groups[J]. Journal of Applied Polymer Science, 2008, 109(5): 3133-3139. [8]Liu D, Chen P, Mu J, et al. Improvement and mechanism of interfa-cial adhesion in PBO fiber/bismaleimide composite by oxygen plasma treatment[J]. Applied Surface Science, 2011, 257(15): 6935-6940. [9]Liu D, Chen P, Chen M, et al. Effects of argon plasma treatment on the interfacial adhesion of PBO fiber/bismaleimide composite and aging behaviors[J]. Applied Surface Science, 2011, 257(23): 10239-10245. [10]Liu D, Chen P, Chen M, et al. Improved interfacial adhesion in PBO fiber/bismaleimide composite with oxygen plasma plus aging and humid resistance properties[J]. Materials Science & Engineering A, 2012, 532(3): 78-83. [11]Liu D, Chen P, Chen M, et al. Surface modification of high performance PBO fibers using radio frequency argon plasma[J]. Surface & Coatings Technology, 2012, 206(16): 3534-3541. [12]李凯. PBO纤维复合材料壳体缠绕成型技术研究[D]. 长沙: 国防科学技术大学, 2011. [13]李晓超. 活性碳纳米管对纤维复合材料界面及力学性能影响[D]. 北京: 北京化工大学, 2011. [14]过梅丽. 高聚物与复合材料的动态力学热分析[M]. 北京: 化学工业出版社, 2002. [15]魏汝斌, 李锋, 梁勇芳, 等. SiC陶瓷表面处理工艺对SiC-AFRP界面粘接性能的影响[J]. 材料工程, 2016, 44(12): 35-40. [16]杨继年, 许爱琴, 丁国新. HGB/PLA复合材料的制备及性能研究[J]. 材料工程, 2012(10): 44-47. [17]朱黎黎, 张佐光, 李敏, 等. 工艺温度下树脂与纤维的接触角及其粘附作用研究[J]. 复合材料学报, 2010, 27(5): 41-46. [18]邓锐, 李敏, 张佐光, 等. 接触角法测玄武岩及玻璃纤维表面能实验[J]. 北京航空航天大学学报, 2007, 33(11): 1349-1352. [19]王彦杰, 孟家光, 张永锋. 硅烷偶联剂改性芳纶的性能测试[J]. 合成纤维, 2017, 46(4): 43-46. [20]李钟一, 鞠苏, 石刚, 等. PBO纤维表面改性及其与树脂基体界面性能研究[J]. 玻璃钢/复合材料, 2015(2): 47-50. [21]刘巍, 张天骄, 包建文, 等. 树脂交联结构特征对复合材料纵向压缩性能的影响[J]. 航空材料学报, 2016, 36(1): 75-80. [22]李默宇, 梁胜彪, 孟庆云, 等. 碳纤维湿法缠绕用高模量高韧性环氧树脂基体[J]. 玻璃钢/复合材料, 2009(2): 72-77. [23]吴雪平, 代建建, 汤瑛召, 等. 模压成型环氧树脂/玄武岩纤维复合材料研究[J]. 工程塑料应用, 2016, 44(1): 16-21. [24]谢小霞, 王成忠, 武小康, 等. 芳香型聚胺醚及其连续玻纤增强复合材料的性能研究[J]. 北京化工大学学报(自然科学版), 2016, 43(4): 46-52. [25]刘新宇, 刘锐, 程圣利, 等. 连续碳纤维增强杂萘联苯共聚芳醚砜复合材料的制备及力学性能[J]. 高分子材料科学与工程, 2015, 31(3): 158-162. [26]梁宁纳, 李光, LiangNingna, 等. 表面处理对环氧树脂/PBO纤维界面剪切强度的影响[J]. 工程塑料应用, 2015(6): 50-53. [27]程浩. POSS改性PBO复合纤维的制备及其性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2015. [28]张晨阳. γ-射线辐照对PBO纤维结构演化与性能的影响[D]. 哈尔滨: 哈尔滨工业大学, 2016. [29]王斌, 丘哲明, 刘爱华, 等. 高性能PBO纤维复合材料成型工艺参数研究[J]. 航空学报, 2004, 25(2): 192-196. |