[1] Ko, F.K.. Carbon-carbon materials for composites[M]. Park Ridge, NJ: Noyes Publications, 1993(4): 71-104. [2] Bogdanovich, A.E., Mohamed, et al. Three-dimensional reinforcements for composites[J]. SAMPE J., 2009, 45(6): 8-28. [3] Schreiber, F., Theelen, K., et al. 3D hexagonal braiding: possibilities in near-net shape preform production for light weight and medical applications[C]//18th International Conference on Composite Materials, Jeju Island, Korea: 2011. [4] 李毓陵. 三维矩形编织规律的研究[D]. 上海: 东华大学, 2005: 91-92. [5] Schreiber, F.. Design of a new microbraider[D]. Institut für Textiltechnik der RWTH Aachen, 2008. [6] F. Schreiber, F. Ko, et al. Novel three-dimensional braiding approach and its products[C]//17th International Conference on Composite Materials, Edinburgh: 2009. [7] Stover, E.R., Mark, W.C., et al. Preparation of an omniweave reinforced carbon-carbon cylinder as a candidate for evaluation in the advanced heat shield screening program[R]. U.S. Air Force Report AFML-TR-70-283, Wright-Patterson AFB, OH, 1971. [8] McAllister, L.E., Lachman, et al. Multidirectional carbonecarbon composites[M]. Elsevier, the Hague: Fabrication of Composites, Handbook of Composites, 1983: 109-175. [9] Florentine RA. Apparatus for weaving a three-dimensional article: US Patent 4312261[P]. 1982. [10] Popper, P., McConnell, R.. A new 3-D braid for integrated parts manufacturing and improved delamination resistanced the 2-step process[C]//Proc. 32nd Int. SAMPE Symp., Covina, CA, 1987: 92-103. [11] Brown RT. Complex shaped braided structures: US Patent 4,719,837[P]. 1988. [12] Ivsan, T.J., Bailey, C., Llewell, J.. Apparatus and method for braiding fiber strands: US Patent 4922798[P]. 1990. [13] Huey, C.O.. Shuttle plate braiding machine: US Patent US5301596[P]. 1994. [14] Brookstein D, Rose D. Apparatus for making a braid structure: US Patent 5501133[P]. 1996. [15] 李政宁. 一种三维编织机主动携纱器的驱动研究与设计[D]. 武汉: 武汉纺织大学, 2013. [16] Lepperhoff B. Braiding machine: US Patent 894022[P]. 1908. [17] Blaisdell, S.B. Braiding brake lining and machine for making same: US Patent US1885676[P]. 1932. [18] Tsuzuki, M., Kimbara, M., Fukuta, K., et al. Three-dimensional fabric woven by interlacing threads with rotor driven carriers: US Patent US5067525[P]. 1991. [19] Dow, R.M. New concept for multiple directional fabric formation[C]//In: 21st International SAMPE Technical Conference, 1989: 558-566. [20] Laourine, E., Schneider, M., Wulfhorst, B.. Computerun-terstutzte berechnung und herstellung von 3D-Geflechten[C]//Belgium: In: Proc. 5th Int. Conf. on Textile Composites, Leuven, 2001: 18-20. [21] Mungalov, D., Bogdanovich, A.. Complex shape 3-D braided composite preforms: structural shapes for marine and aerospace[J]. SAMPE J., 2004, 40(3):7-20. [22] Gao Y.T., Frank Ko, et al. Integrated design for manufacturing of braided preforms for advanced composites Part II: 3D Braiding[J]. Appl Compos Mater, 2013(20): 1065-1075. [23] Tilmann Sontag. A comparison of the cartesian braiding process and the hexagonal braiding process to produce tubular, bifurcated structures[D]. Institut Fur Textiltechnik der RWTH Aachen, 2013. [24] 宋云飞, 杜宇. 三维编织复合材料力学性能研究现状[J]. 玻璃钢/复合材料, 2017(10): 104-109. [25] 张爽, 吴晓青, 程勇. 二维编织理论研究进展[J]. 玻璃钢/复合材料, 2017(8): 102-109. [26] Tim Huber, Britta Kuckhoff, et al. Three-dimensional braiding of continuous regenerated cellulose fibres[J]. Industrial Textiles, 2016, 45(5): 707-715. [27] Yordan Kyosev, Katalin Kuster. Development of machine configuration for T- and I-profiles and their topological modelling[J]. Narrow and Smart Textiles, 2017, 81-89. [28] Rongqiao Wang, Long Zhang, et al. Evaluation of three unit cell models in predicting the mechanical behavior of 3D four-directional braided composites[J]. Journal of Composite Materials, 2017, 51(27): 3757-3767. [29] Ravenhorst JHv, Akkerman R. A spool pattern tool for circular braiding[C]//London, United Kingdom: In: 18th international conference on composite materials, 2016: 18-19. [30] Meng Zhou, Zhang Yujin, et al. Modeling and analysis of the carrier arrangement in three-dimensional circular braiding[J]. Textile Research Journal, 2018, 88(1): 49-58. |