玻璃钢/复合材料 ›› 2018, Vol. 0 ›› Issue (7): 12-18.

• 基础研究 • 上一篇    下一篇

基于支持向量机的碳纤维增强复合材料梁的分层损伤识别

贺梦悦, 梁智洪, 张芝芳*   

  1. 广州大学-淡江大学工程结构灾害与控制联合研究中心,广州 510006
  • 收稿日期:2018-04-09 出版日期:2018-07-20 发布日期:2018-07-20
  • 通讯作者: 张芝芳(1985-),女,博士,副研究员,主要从事复合材料损伤识别和健康监测方面的研究,zfzhang@gzhu.edu.cn。
  • 作者简介:贺梦悦(1994-),女,硕士生,主要从事复合材料损伤识别方面的研究。
  • 基金资助:
    国家自然科学基金项目(51508118);广东省自然科学基金项目(2016A030310261);广东省科技计划项目(2016B050501004)

DELAMINATION IDENTIFICATION OF COMPOSITE LAMINATED BEAMS BASED ON SUPPORT VECTOR MACHINE

HE Meng-yue, LIANG Zhi-hong, ZHANG Zhi-fang*   

  1. Guangzhou University-Tamkang University Joint Research Center for Engineering Structure Disaster Prevention and Control, Guangzhou 510006, China
  • Received:2018-04-09 Online:2018-07-20 Published:2018-07-20

摘要: 针对目前支持向量机(SVM)运用于复合材料的分层损伤识别的有关研究尚少,采用归一化后的模态频率,基于SVM回归理论对碳纤维增强复合材料(CFRP)悬臂梁的分层损伤位置、大小及分层界面进行了损伤识别。首先建立了CFRP梁的有限元模型,得到“损伤变量-模态频率”的数据库和数值测试案例,对比不同参数优化方法下的SVM回归预测效果。然后使用德国Polytec激光扫描测振仪进行模态试验获取CFRP梁试件的模态频率值,将实测频率值用于SVM回归预测,进一步证实了SVM在CFRP梁结构的分层损伤识别领域的应用前景。

关键词: 支持向量机, 碳纤维增强复合材料, 损伤识别, 频率

Abstract: Support vector machine (SVM) has not yet been introduced to detect delaminations for fibre reinforced composite materials, and this paper is proposed to assess the delaminations in carbon fiber reinforced polymer (CFRP) beams based on SVM regression, through the changes in modal frequencies due to the damage occurs. Firstly, the finite element model of CFRP beam was established to generate the database of "delamination variables vs. modal frequencies" as well as the test cases for numerical validation. Three different parameter optimization methods, namely, cross validation (CV), genetic algorithm (GA) and particle swarm optimization (PSO), were applied to obtain the suitable parameters for SVM to improve the prediction accuracy. Furthermore, the Polytec laser scanning vibrameter was adopted to conduct the model testing for CFRP beam specimens. The measured frequencies of the specimens were used for validating the SVM regression experimentally, which confirmed that the SVM can be used to detect delamination in CFRP beams.

Key words: support vector machine, CFRP, damage detection, frequency

中图分类号: