[1] Walid Roundi A E M, Abdellah EL Gharad, Jean-LUC REBIÈRE. Experimental and numerical investigation of the effects of stacking sequence and stress ratio on fatigue damage of glass/epoxy composites[J]. Composites Part B, 2017, 109: 64-71. [2] R. Velmurugan S S. Influence of fibre orientation and stacking sequence on petalling of glass/polyester composite cylindrical shells under axial compression[M]. International Journal of Solids and Structures, 2007: 6999-7020. [3] Jiang H., Ren Y., Gao B., et al. Numerical investigation on links between the stacking sequence and energy absorption characteristics of fabric and unidirectional composite sinusoidal plate[J]. Composite Structures, 2017. [4] J. Babbage P M. Static axial crush performance of unfilled and foam-filled aluminum-composite hybridtubes[J]. Compos Struct, 2005, 70: 177-184. [5] Mamalis A, Manolakos D, Ioannidis M B, et al. Crushing of hybrid square sandwich composite vehicle hollow bodyshells with reinforced core subjected to axial loading: Numerical simulation[M]. 2003. [6] T. A. Sebaey E M. Filler strengthening of foam-filled energy absorption devices using CFRP beams[J]. Composite Structures, 2016. [7] Othman A, Abdullah S, Ariffin A K, et al. Investigating the quasi-static axial crushing behavior of polymeric foam-filled composite pultrusion square tubes[J]. Materials & Design, 2014, 63: 446-459. [8] Lu Wang W L, Yuan Fang, Li Wan, et al. Axial crush behavior and energy absorption capability of foam-filled GFRP tubes manufactured through vacuum assisted resin infusion process[J]. Thin-Walled Structures, 2016, 98: 263-273. [9] A. Goren C A. Manufacturing of polymer matrix composites using vacuum assisted resin infusion molding[J]. Archives of Materials Science and Engineering, 2008, 34(2): 117-120. [10] D. Mondal M G, S. Das. Effect of strain rate and relative density on compressive deformation behavior of closed cell aluminum-fly ash composite foam[J]. MaterDes, 2009, 30: 1268-1274. [11] D. Mondal M G, S.Das. Compressive deformation and energy absorption characteristics of closed cell aluminum-fly ash particle composite foam[J]. Mater Sci Eng A, 2009, 507(1-2): 102-109. [12] Goel M. Deformation, energy absorption and crushing behavior of single-, double-and multi-wall foam filled square and circular tubes[J]. Thin-Walled Structures, 2015, 90: 1-11. [13] Guoxing L T Y. Energy absorption of structures and materials[J]. England: Wood head Publishing Limited, 1-23. [14] ISO. Fibre-reinforced plastic composites -Determination of mode Ⅰ interlaminar fracture toughness, GIC, for unidirectionally reinforced materials[M]. 15024. 2001. [15] Z. H. Failure criteria for unidirectional fiber composites[J]. J Appl Mech, 1980, 47(329). [16] Benzeggagh M L, Kenane M. Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus[M]. 1996. [17] Sharma A P, Khan S H, Parameswaran V. Experimental and numerical investigation on the uni-axial tensile response and failure of fiber metal laminates[J]. Composites Part B: Engineering, 2017, 125: 259-274. [18] Hibbitt K, Sorensen. Abaqus 6.6 User′s Manuals[M]. Pawtucket, USA: 1996. [19] ASTM. Standard test method for mode Ⅰ interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites[M]. 2007. |