[1] 陈铭, 徐冠峰, 张磊. 直升机传动系统和旋翼系统关键技术[J]. 航空制造技术, 2010(16): 32-37. [2] 王丹勇, 陈以蔚, 李树虎, 等. 纤维增强复合材料传动轴应用及设计技术研究[J]. 工程塑料应用, 2012, 40(2): 92-96. [3] 许兆棠, 朱如鹏. 直升机复合材料传动轴的主共振分析[J]. 机械工程学报, 2006, 42(2): 155-160. [4] 梁宪珠, 孙占红, 张铖, 等. 航空预浸料-热压罐工艺复合材料技术应用概况[J]. 航空制造技术, 2011, 20: 26-30. [5] 李树健, 湛利华, 彭文飞, 等. 先进复合材料构件热压罐成型工艺研究进展[J]. 稀有金属材料与工程, 2015, 11: 2927-2931. [6] Maffezzoli A, Grieco A. Optimization of parts placement in autoclave processing of composites[J]. Applied Composite Materials, 2013, 20(3): 233-248. [7] Chen Y, Li Y, You Y, et al. Research on mechanical properties of epoxy/glass fiber composites cured by microwave radiation[J]. Jour-nal of Reinforced Plastics & Composites, 2014, 33(15): 1441-1451. [8] 刘学清, 王源升. 微波固化环氧树脂(E44/DDM)的热性能及膨胀性能[J]. 高分子材料科学与工程, 2004, 20(3): 111-113. [9] Nightingale C, Day R J. Flexural and interlaminar shear strength properties of carbon fibre/epoxy composites cured thermally and with microwave radiation[J]. Composites Part A: Applied Science and Manufacturing, 2002, 33(7): 1021-1030. [10] Rao R. Studies on tensile and interlaminar shear strength properties of thermally cured and microwave cured glass-epoxy composites[J]. Journal of Reinforced Plastics & Composites, 2006, 25(7): 783-795. [11] 李卫东, 曹海琳, 魏斌, 等. BF/CF层间混杂结构对复合材料性能影响[J]. 热固性树脂, 2009, 24(5): 39-43. [12] 黄博生, 商和财, 彭亚萍. 碳/玻混杂纤维的混杂效应及其受力性能研究[J]. 高科技纤维与应用, 2005, 30(6): 39-41. [13] Agrawal A, Satapathy A. Experimental investigation of micro-sized aluminium oxide reinforced epoxy composites for microelectronic applications[J]. Procedia Materials Science, 2014, 5: 517-526. [14] Deng Y, Fan H, Zhang J. Effect of surface modification on mechanical performances of alumina-dispersed epoxy composites[J]. Journal of the Chinese Ceramic Society, 2008, 36: 1251-1255. [15] 王旗, 李喆, 尹毅, 等. 微/纳米氧化铝/环氧树脂复合材料热导率和击穿强度的研究[J]. 绝缘材料, 2013, 46(2): 49-52. [16] 郑伟峰, 周来水, 袁铁军, 等. 颗粒Al2O3增强环氧树脂复合材料的微波固化动力学及性能[J]. 高分子材料科学与工程, 2017, 33(10): 65-71. |