[1]中国化工学会涂料涂装专业委员会海洋石油工业防腐分会. 风电保护涂料市场发展现状. 涂料技术与文摘, 2010, 31(3): 3-9. [2] Sun X , Huang D, Wu G. The current state of offshore wind energy technology development. Energy, 2012, 41(1): 298-312. [3] Kaldellis J K, Zafirakis D. The wind energy (r)evolution: A short review of a long history. Renewable Energy, 2011, 36(7): 1887-1901. [4] Cortés E, Sánchez F, O′Carroll A, et al. On the material characterisation of wind turbine blade coatings: The effect of interphase coating-laminate adhesion on rain erosion performance. Materials, 2017, 10(10): 1146-1168. [5] Han W, Kim J, Kim B. Effects of contamination and erosion at the leading edge of blade tip airfoils on the annual energy production of wind turbines. Renewable Energy, 2018, 115: 817-823. [6] Keegan M H, Nash D H, Stack M M. On erosion issues associated with the leading edge of wind turbine blades. Journal of Physics D: Applied Physics, 2013, 46(38): 383001. [7] Sareen A, Sapre C A, Selig M S. Effects of leading edge erosion on wind turbine blade performance. Wind Energy, 2014, 17(10): 1531-1542. [8] Andre V E. Droplet erosion protection coatings for offshore wind turbine blades. Energy Procedia, 2015, 80: 263-275. [9] Slot H M, Gelinck E R M, Rentrop C, et al. Leading edge erosion of coated wind turbine blades: Review of coating life models. Renewable Energy, 2015, 80: 837-848. [10] 张军瑞. 高性能透明聚氨酯涂层的制备、结构与性能关系研究. 广州: 华南理工大学, 2013. [11] 张鑫, 孟庆伟. 一种用于风电叶片前缘保护的新型聚氨酯耐磨涂层//2014全国风电后市场专题研讨会论文集. 2014. [12] 王晓, 王华进, 赵薇, 等. 风电叶片涂料用树脂研究进展. 表面技术, 2016, 45(6): 28-35. [13] 施红辉, 俞茂铮. 高速液-固碰撞时固体弹性和液体可压缩性对撞击压力的影响. 应用力学学报, 1989(4): 73-75. [14] 汪勇, 谢永慧, 张荻. 液固高速撞击时材料表面损伤的数值模拟. 西安交通大学学报, 2008, 42(11): 1435-1440. [15] 张立新, 赵春妮. 风电叶片雨蚀微观机理及防护特性的研究//第四届中国风电后市场专题研讨会论文集. 2017. [16] 黄飞. 水射流冲击瞬态动力特性及破岩机理研究. 重庆: 重庆大学, 2015. |