[1]Geim A K, Novoselov K S. The rise of graphene. Nature Materials, 2007, 6(3): 183-91. [2] Rao C N, Sood A K, Subrahmanyam K S, et al. Graphene: the new two-dimensional nanomaterial. Angewandte Chemie International Edition, 2009, 48(42): 7752-7777. [3] Rao C N R, Biswas K, Subrahmanyam K S, et al. Graphene, the new nanocarbon. Journal of Materials Chemistry, 2009, 19(17): 2457-2469. [4] 王琛英, 景蔚萱, 蒋庄德, 等. 采用HRTEM对石墨烯材料单层厚度测量的研究. 计量学报, 2017, 38(2): 145-148. [5] Li D, Kaner R B. Graphene-Based Materials. Science, 2008, 320(5880): 1170-1171. [6] 于倩倩, 陈刚, 郑志才, 等. 酸化石墨烯改性环氧树脂及其碳纤维复合材料力学性能研究 . 玻璃钢/复合材料, 2018(5): 33-40. [7] 李伟, 周保全, 李中辉, 等. 石墨烯改性热固性树脂及其纤维复合材料的研究进展. 玻璃钢/复合材料, 2014(11): 96-101. [8] King J A, Klimek D R, Miskioglu I, et al. Mechanical properties of graphene nanoplatelet/epoxy composites. Journal of Applied Polymer Science, 2013, 128(6): 4217-4223. [9] Atif R, Shyha I, Inam F. Modeling and experimentation of multi-layered nanostructured graphene-epoxy nanocomposites for enhanced thermal and mechanical properties. Journal of Composite Materials, 2017, 51(2). [10] Odegard G M, Gates T S, Wise K E, et al. Constitutive modeling of nanotube-reinforced polymer composites. Composites Science & Technology, 2001, 63(11): 1671-1687. [11] Herasati S, Zhang L C, Ruan H H. A new method for characterizing the interphase regions of carbon nanotube composites. International Journal of Solids & Structures, 2014, 51(9): 1781-1791. [12] Papanicolaou G C, Drakopoulos E D, Anifantis N K, et al. Experimental, analytical, and numerical investigation of interphasial stress and strain fields in MWCNT polymer composites. Journal of Applied Polymer Science, 2012, 123: 699-706. [13] Giannopoulos G I, Georgantzinos S K, Katsareas D E, et al. Numerical prediction of Young′s and shear moduli of carbon nanotube composites incorporating nanoscale and interfacial effects. Computer Modeling in Engineering & Sciences, 2010, 56(3): 231-248. [14] Liu Y J, Chen X L. Evaluations of the effective material properties of carbon nanotube-based composites using nanoscale representative volume element. Mechanics of Materials, 2003, 35(1): 69-81. [15] Spanos K N, Georgantzinos S K, Anifantis N K. Mechanical properties of graphene nanocomposites: a multiscale finite element prediction. Composite Structures, 2015, 132: 536-544. [16] Giannopoulos G I, Kallivokas I G. Mechanical properties of graphene based nanocomposites incorporating a hybrid interphase. Finite Elements in Analysis & Design, 2014, 90: 31-40. [17] Kim J H, Paulino G H. Isoparametric graded finite elements for nonhomogeneous isotropic and orthotropic materials. Journal of Applied Mechanics, 2002, 69 (4): 502-514. [18] Kim J H, Paulino G H. Finite element evaluation of mixed mode stress intensity factors in functionally graded materials. International Journal for Numerical Methods in Engineering, 2010, 53(8):1903-1935. [19] Buttlar W G. Application of graded finite elements for asphalt pavements. Journal of Engineering Mechanics, 2006, 132(3): 240-249. [20] Paulino, Glaucio H, Kim, Jeong-Ho. The weak patch test for nonhomogeneous materials modeled with graded finite elements. Journal of the Brazilian Society of Mechanical Sciences & Engineering, 2007, 29 (1): 63-81. [21] 沈观林, 胡更开. 复合材料力学. 北京: 清华大学出版社, 2006. [22] Zhao X, Zhang Q, Chen D, et al. Enhanced mechanical properties of graphene-based poly (vinyl alcohol) composites. Macromolecules, 2010, 43(5): 2357-2363. |