玻璃钢/复合材料 ›› 2019, Vol. 0 ›› Issue (2): 5-12.

• 基础研究 •    下一篇

干纱缠绕复合材料压力容器的结构设计与强度分析

陈旦1, 祖磊1*, 许家忠2, 刘美军2   

  1. 1.武汉理工大学材料科学与工程学院,武汉430070;
    2.哈尔滨理工大学自动化学院,哈尔滨150080
  • 收稿日期:2018-06-26 出版日期:2019-02-28 发布日期:2019-02-28
  • 通讯作者: 祖磊(1983-),男,博士,教授,主要从事复合材料力学与结构设计方面的研究,zulei@whut.edu.cn。
  • 作者简介:陈旦(1994-),男,硕士研究生,主要从事复合材料力学与结构设计方面的研究。
  • 基金资助:
    国家自然科学基金(11302168);湖北省自然科学基金(2014CFB140);中央高校基本科研业务费专项资金资助项目(143101001)

STRUCTURAL DESIGN AND STRENGTH ANALYSIS OF DRY FILAMENT WINDING COMPOSITE PRESSURE VESSELS

CHEN Dan1, ZU Lei1*, XU Jia-zhong2, LIU Mei-jun2   

  1. 1.School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China;
    2.Harbin University of Science and Technology, School of Automation, Harbin 150080, China
  • Received:2018-06-26 Online:2019-02-28 Published:2019-02-28

摘要: 相对于湿法缠绕复合材料压力容器传统的壳单元建模与分析方法,提出了一种基于干纱束模式的纤维缠绕压力容器的细观建模和强度分析方法。通过Python和MATLAB完成干纱缠绕层的参数化建模,利用有限元软件ABAQUS研究各工况下压力容器的力学响应。使用机器人缠绕工作站完成压力容器的干纱缠绕实验,验证了设计参数和线型的可行性。结果表明:基于干纱束的参数化建模方法能准确地反映纤维缠绕的真实路径;同一角度纤维层连续的铺层方案更适用于干纱缠绕结构;工作压强(4 MPa)下,气瓶各区域的应力值均满足设计要求,筒身段环向层纤维的最大主应力远大于螺旋层;当内压达到16 MPa时,气瓶环向纤维断裂引发气瓶失效。

关键词: 干纱缠绕, 压力容器, 参数化建模, 嵌套单元, 强度分析

Abstract: Compared with the traditional shell element modeling and analysis methods for resin based fiber winding composite pressure vessels, this paper proposes a modeling and finite element analysis method for dry filament wound pressure vessels based on the fiber bundle model. The parametric modeling of the dry fiber winding layer was accomplished through Python programming and MATLAB. The finite element software ABAQUS was used to study the mechanical response of the dry fiber wound pressure vessel under working pressure. Using a robot winding station to complete the dry yarn winding experiment of the pressure vessel, the feasibility of design parameters and line type was verified. The calculation results show that the parametric modeling method based on dry yarn bundles can accurately reflect the true path of filament winding. The continuous layering scheme at the same angle makes the mechanical properties of the fiber more fully utilized. Under the working pressure (i. e.,4 MPa), the stress values in each zone of the cylinder are all designed to meet the design requirements, the maximum principal stress of the fiber in the loop layer of the cylinder body is much greater than that of the spiral layer. When the internal pressure reaches 16 MPa, fiber breakage in the circumferential direction causes the failure of pressure vessel.

Key words: dry fiber winding, pressure vessel, parametric modeling, embedded element technique, strength analysis

中图分类号: