[1] Xu H, Tong X, Zhang Y, et al. Mechanical and electrical properties of laminated composites containing continuous carbon nanotube film interleaves[J]. Composites Science and Technology, 2016, 127: 113-118. [2] Almuhammadi K, Alfano M, Yang Y, et al. Analysis of interlaminar fracture toughness and damage mechanisms in composite laminates reinforced with sprayed multi-walled carbon nanotubes[J]. Materials & Design, 2014, 53(1): 921-927. [3] Khan S U, Kim J K. Improved interlaminar shear properties of multiscale carbon fiber composites with bucky paper interleaves made from carbon nanofibers[J]. Carbon, 2012, 50(14): 5265-5277. [4] 周磊, 黎大胜, 侯锐钢. 铺层结构对树脂基复合材料层间剪切强度影响的研究[J]. 玻璃钢/复合材料, 2016(9): 44-48. [5] Jiang J, Yao X, Xu C, et al. Preparation of graphene oxide coatings onto carbon fibers by electrophoretic deposition for enhancing interfacial strength in carbon fiber composites[J]. Journal of the Electrochemical Society, 2016, 163(5): D133-D139. [6] Kostopoulos V, Kotrotsos A, Tsantzalis S, et al. Toughening and healing of continuous fibre reinforced composites by supramolecular polymers[J]. Composites Science & Technology, 2016, 128: 84-93. [7] 张晓霞, 戚海东, 王芳, 等. 风电叶片复合材料层间剪切破坏声发射监测[J]. 工程塑料应用, 2012, 40(8): 77-80. [8] Borooj M B, Shoushtari A M, Haji A, et al. Optimization of plasma treatment variables for the improvement of carbon fibres/epoxy composite performance by response surface methodology[J]. Composites Science & Technology, 2016, 128: 215-221. [9] Zhou G, Movva S, Lee L J. Preparation and properties of nanoparticle and long-fiber-reinforced unsaturated polyester composites[J]. Polymer Composites, 2009, 30(7):861-865. [10] Mekic S, Akhatov I S, Ulven C A. Analysis of a radial infusion model for in-plane permeability measurements of fiber reinforcement in composite materials[J]. Polymer Composites, 2010, 30(12): 1788-1799. [11] Nguyen V H, Lagardere M, Park C H, et al. Permeability of natural fiber reinforcement for liquid composite molding processes[J]. Journal of Materials Science, 2014, 49(18): 6449-6458. [12] Pan R, Liang Z, Zhang C, et al. Statistical characterization of fiber permeability for composite manufacturing[J]. Polymer Composites, 2000, 21(6): 996-1006. [13] 魏浩, 朱凌, 王继辉. 添加表面毡对复合材料层间增韧的影响[J]. 玻璃钢/复合材料, 2015(10): 48-52. [14] Matsuda S, Hojo M, Murakami A, et al. Mode Ⅱ interlaminar fracture toughness of ionomer interleaved carbon fiber/epoxy laminates[J]. Journal of the Adhesion Society of Japan, 2000, 36(2): 45-52. [15] Beckermann G W, Pickering K L. Mode-I and Mode-Ⅱ interlaminar fracture toughness of composite laminates interleaved with electrospun nanofibre veils[J]. Composites Part A:Applied Science and Manufacturing, 2015, 72: 11-21. [16] 沈跃风, 胡美群. 纤维复合材料的无纺布层间增韧性研究[J]. 化工设计通讯, 2017, 43(8):68-69. [17] Pegoretti A, Cristelli I, Migliaresi C. Experimental optimization of the impact energy absorption of epoxy-carbon laminates through controlled delamination[J]. Composites Science and Technology, 2008, 68(13): 2653-2662. [18] 张朋, 刘刚, 胡晓兰, 等. 结构化增韧层增韧RTM复合材料性能[J]. 复合材料学报, 2012, 29(4): 1-9. [19] Kuwata M, Hogg P J. Interlaminar toughness of interleaved CFRP using non-woven veils: Part 2. Mode-Ⅱ testing[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(10): 1551-1559. [20] Guo M, Yi X, Liu G, et al. Simultaneously increasing the electrical conductivity and fracture toughness of carbon-fiber composites by using silver nanowires-loaded interleaves[J]. Composites Science and Technology, 2014, 97: 27-33. |