[1] 江海军, 陈力. 红外热波成像技术在复合材料无损检测中的应用. 无损检测, 2018, 40(11): 37-41.
[2] 程军, 杨继全, 裘进浩, 等. 基于涡流成像的碳纤维增强树脂基复合材料细观结构可视化. 复合材料学报, 2018, 35(8): 2074-2083.
[3] Smith R A, Nelson L J, Mienczakowski M J, et al. Ultrasonic analytic-signal responses from polymer-matrix composite laminates. IEEE Trans Ultrason Ferroelectr Freq Control, 2018, PP(99):231-243.
[4] 张健. X射线检测技术在复合材料检测中的应用与发展. 电子技术与软件工程, 2018(23): 98.
[5] Raffaella D S. Fibre optic sensors for structural health monitoring of aircraft composite structures: recent advances and applications. Sensors, 2015, 15(8): 18666-18713.
[6] Li W, Matthews C C, Yang K, et al. Autonomous indication of mechanical damage in polymeric coatings. Advanced Materials, 2016, 28(11): 2189-2194.
[7] 季小勇, 李惠, 欧进萍. 炭黑分散状态对炭黑/环氧树脂导电复合材料电阻率和力电性能的影响. 复合材料学报, 2009, 26(5): 39-46.
[8] Ji X , Li H , Hui D , et al. Ⅰ-Ⅴ characteristics and electro-mechanical response of different carbon black/epoxy composites. Composites Part B: Engineering, 2010, 41(1): 25-32.
[9] Meeuw H, Viets C, Liebig W V, et al. Morphological influence of carbon nanofillers on the piezoresistive response of carbon nanoparticle/epoxy composites under mechanical load. European Polymer Journal, 2016, 85: 198-210.
[10] 黄楷焱, 童疏影, 陈泽芸, 等. CNT/EP复合材料应变传感器的实验研究. 机械设计与制造, 2017(1): 149-151, 155.
[11] Hu N, Karube Y, Arai M, et al. Investigation on sensitivity of a polymer/carbon nanotube composite strain sensor. Carbon, 2010, 48(3): 680-687.
[12] Hu N, Karube Y, Yan C, et al. Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor. Acta Materialia, 2008, 56(13): 2929-2936.
[13] Hu N, Masuda Z, Yan C, et al. The electrical properties of polymer nanocomposites with carbon nanotube fillers. Nanotechnology, 2008, 19(21): 215701.
[14] Panozzo F, Zappalorto M, Quaresimin M. Analytical model for the prediction of the piezoresistive behavior of CNT modified polymers. Composites Part B Engineering, 2017, 109: 53-63.
[15] Leopold C, Augustin T, Schwebler T, et al. Influence of carbon nanoparticle modification on the mechanical and electrical properties of epoxy in small volumes. J Colloid Interface Sci, 2017, 506: 620-632.
[16] 李志鹏, 王高潮, 谢小林, 等. 碳/环氧复合材料的电阻-应变自诊断基础研究. 南昌航空大学学报(自然科学版), 2007(4): 35-37, 42.
[17] 王何伟, 王钧, 王翔, 等. 具有应变诊断功能的碳纤维机敏复合材料研究. 功能材料, 2007, 38(2): 578-580.
[18] Kostopoulos V, Vavouliotis A, Karapappas P, et al. Damage monitoring of carbon fiber reinforced laminates using resistance measurements. Improving sensitivity using carbon nanotube doped epoxy matrix system. Journal of Intelligent Material Systems & Structures, 2009, 20(9): 1025-1034.
[19] Liu W, Hubert P J. Self-sensing of strain in carbon nanotube modified carbon fibre reinforced composites//Aiaa/asme/asce/ahs/sc Structures, Structural Dynamics, and Materials Conference. 2013.
[20] Cattin C, Liu W, Hubert P. Comparing electromechanical characteristics of polymer-carbon nanotube and polymer-carbon fibre-carbon nanotube composites//ICCM. 2013.
[21] Wang Y L, Wang Y S, Wan B L, et al. Properties and mechanisms of self-sensing carbon nanofibers/epoxy composites for structural health monitoring. Composite Structures, 2018, 200: 669-678.
[22] Wang Y, Chang R, Chen G. Strain and damage self-sensing prop-erties of carbon nanofibers/carbon fiber-reinforced polymer laminates. Advances in Mechanical Engineering, 2017, 9(1): 1-7.
[23] Luan C C, Yao X H, Shen H Y, et al. Self-Sensing of position-related loads in continuous carbon fibers-embedded 3D-printed polymer structures using electrical resistance measurement. Sensors, 2018, 18(4): 994.
[24] Bowland C C, Nguyen N A, Naskar A K. Roll-to-roll processing of silicon carbide nanoparticle-deposited carbon fiber for multifunctional composites. ACS Applied Materials & Interfaces, 2018(10): 26576-26585.
[25] Thostenson E T, Chou T W. Carbon nanotube networks: sensing of distributed strain and damage for life prediction and self healing. Advanced Materials, 2010, 18(21): 2837-2841.
[26] Wang Y, Wang Y, Han B, et al. In situ strain and damage monitoring of GFRP laminates incorporating carbon nanofibers under tension. Polymers, 2018, 10(7): 777.
[27] Gao S L, Zhuang R C, Zhang J, et al. Sensors: glass fibers with carbon nanotube networks as multifunctional sensors. Advanced Functional Materials, 2010, 20(12): 1885-1893.
[28] Jie Z, Zhuang R, Liu J, et al. A single glass fiber with ultrathin layer of carbon nanotube networks beneficial to in-situ monitoring of polymer properties in composite interphases. Soft Materials, 2014, 12(Sup 1): S115-S120.
[29] Zhang J, Liu J, Zhuang R, et al. Single MWNT-glass fiber as strain sensor and switch. Advanced Materials, 2011, 23(30): 3392-3397.
[30] Balaji R, Sasikumar M. Graphene based strain and damage prediction system for polymer composites. Composites Part A Applied Science & Manufacturing, 2017,103: 48-59.
[31] Ku-Herrera J J, Pacheco-Salazar O F, Ríos-Soberanis C R, et al. Self-sensing of damage progression in unidirectional multiscale hierarchical composites subjected to cyclic tensile Loading. Sensors, 2016, 16(3): 400.
[32] Wang Y, Wang Y, Wan B, et al. Strain and damage self-sensing of basalt fiber reinforced polymer laminates fabricated with carbon nanofibers/epoxy composites under tension. Composites Part A: Applied Science and Manufacturing, 2018, 113: 40-52. |