[1] Lim H J, Sohn H, Kim Y. Data-driven fatigue crack quantification and prognosis using nonlinear ultrasonic modulation. Mechanical Systems & Signal Processing, 2018, 109: 185-195.
[2] 汪星明, 郭耀红, 朱庆友, 等. 复合材料无损检测研究进展. 玻璃钢/复合材料, 2012(1): 261-265.
[3] 王宝瑞, 丁新静. 纤维增强复合材料的无损探伤技术探讨. 玻璃钢/复合材料, 2014(4): 91-94.
[4] Punnose S, Mukhopadhyay A, Sarkar R, et al. Characterisation of microstructural damage evolution during tensile deformation of a near-α titanium alloy: Effects of microtexture. Materials Science & Engineering A, 2014, 607(12): 476-481.
[5] Kim J, Song D G, Jhang K Y. A method to estimate the absolute ultrasonic nonlinearity parameter from relative measurements. Ultrasonics, 2017, 77: 197.
[6] Zhang M, Li X, Qu W, et al. Damage detection of fatigue cracks under nonlinear boundary condition using subharmonic resonance. Ultrasonics, 2017, 77: 152-159.
[7] Rauter N, Lammering R, Kühnrich T. On the detection of fatigue damage in composites by use of second harmonic guided waves. Composite Structures, 2016, 152: 247-258.
[8] 颜丙生, 刘自然, 张跃春, 等. 非线性超声检测镁合金早期疲劳的试验研究. 机械工程学报, 2013, 49(4): 20-24.
[9] 万楚豪, 刚铁, 刘斌, 等. 高速铁路钢轨疲劳过程的超声非线性系数表征.中国铁道科学, 2015, 36(5): 75-79.
[10] Valluri J S, Balasubramaniam K, Prakash R V. Creep damage characterization using non-linear ultrasonic techniques. ActaMaterialia, 2010, 58(6): 2079-2090.
[11] Masurkar F A, Yelve N P. Optimizing location of damage within an enclosed area defined by an algorithm based on the Lamb wave response data. Applied Acoustics, 2017, 120(C): 98-110.
[12] Yun D, Kim J, Jhang K Y. Imaging of contact acoustic nonlinearity using synthetic aperture technique. Ultrasonics, 2013, 53(7): 1349-1354.
[13] 阎红娟. 金属构件疲劳损伤非线性超声检测方法研究. 北京: 北京理工大学, 2015.
[14] 胡海峰. 板状金属结构健康监测的非线性超声理论与关键技术研究. 长沙: 国防科学技术大学, 2011.
[15] Nam T, Lee T, Kim C, et al. Harmonic generation of an obliquely incident ultrasonic wave in solid-solid contact interfaces. Ultrasonics, 2012, 52(6): 778-783.
[16] 何梅洪. 基于超声的复合材料构件疲劳损伤检测与评价研究. 天津: 天津工业大学, 2016. |