[1] Carter R H. Characterizing the mechanical properties of composite materials using tubular samples. BlacksburgVirginia: Virginia Polytechnic Institute and State University, 2001: 1.
[2] Xu H J, Zhang L T, Wang Y G, et al. The effects of Z-stitching density on thermophysical properties of plain woven carbon fiber reinforced silicon carbide composites. Ceram. Int., 2015(41): 283-290.
[3] Liao K, Lesko J J, Stinchcomb W W, et al. An axial/torsional test method for ceramic matrix composite tubular specimens//Pro-ceedings of the 17th Annual Conference on Composites and Advanced Ceramic Materials. Cocoa Beach, FL: 1993.
[4] Xu Y D, Zhang L T, Cheng L F, et al. Microstructure and mechanical properties of three-dimensional carbon/silicon carbide composites fabricated by chemical vapor infiltration. Carbon, 1998(36): 1051-1056.
[5] Leuchs M, Mühlratzer A. Ceramic matrix composite material in highly loaded journal bearings//Proceedings of ASME TURBO EXPO 2002. Amsterdam, The Netherlands: 2002.
[6] Behrens B, Muler M. Technologies for thermal protection systems ap-plied on re-usable launcher. Acta Astronaut, 2004(55): 529-536.
[7] Mutasher S A. Prediction of the torsional strength of the hybrid alu-minum/composite drive shaft. Mater. Des., 2009(30): 215-220.
[8] Zhao H, Zhang L T, Chen B,et al. The effects of fiber orientation on failure behaviors of 2D C/SiC torque tube. Eur. Ceram. Soc., 2017(37): 4223-4330.
[9] American Military. The composite materials handbook CMH-17. United States: American Military, 2009: 1-713.
[10] Kristin M. Hexcel 8552 IM7 unidirectional prepreg 190 gsm & 35% RC qualification material property data report. USA: Wichita State University, National Institute for Aviation Research, 2011: 1-104.
[11] Elizabeth C. Hexcel 8552 IM7 unidirectional prepreg 190 gsm & 35% RC qualification statistical analysis report. USA: Wichita State University, National Institute for Aviation Research, 2012: 1-104.
[12] Murthy P L, Chamis C C. Integrated composite analyzer (ICAN)-users and programmers manual. United States: National Aeronautics and Space Administration Cleveland Oh Lewis Research Center, 1986: 1-80.
[13] Abumeri G, Abdi F, Raju K S, et al. Cost effective computational approach for generation of polymeric composite material allowables for reduced testing. InTechOpen, 2011, 11: 247-270.
[14] Abumeri G, Housner J, Garg M, et al. Determination of composites A- and B-basis allowables with reduced testing//SAMPE. Long Beach, CA: 2011.
[15] 冯振宇. 复合材料B基准值统计方法的对比分析. 材料导报, 2012, 26: 147-149. |