[1] Gunes R, Arslan K. Development of numerical realistic model for predicting low-velocity impact response of aluminium honeycomb sandwich structures[J]. Journal of Sandwich Structures & Materials, 2015, 97(7): 529-538. [2] Sadowski T, Bęc J. Effective properties for sandwich plates with aluminium foil honeycomb core and polymer foam filling-Staticanddy-namic response[J]. Computational Materials Science, 2011, 50(4): 1269-1275. [3] Jang W Y, Kyriakides S. On the buckling and crushing of expanded honeycomb[J]. International Journal of Mechanical Sciences, 2015, 91: 81-90. [4] Akkus H, Duzcukoglu H, Sahin O S. Experimental research and use of finite elements method on mechanical behaviors of honeycomb structures assembled with epoxy-based adhesives reinforced with nanoparticles[J]. Journal of Mechanical Science & Technology, 2017, 31(1): 165-170. [5] Manes A, Gilioli A, Sbarufatti C, et al. Experimental and numerical investigations of low velocity impact on sandwich panels[J]. Composite Structures, 2013, 99(5): 8-18. [6] Tao Y, Duan S, Wen W, et al. Enhanced out-of-plane crushing strength and energy absorption of in-plane graded honeycombs[J]. Composites Part B Engineering, 2017, 118. [7] Zhang D, Jiang D, Fei Q, et al. Experimental and numerical investigation on indentation and energy absorption of a honeycomb sandwich panel under low-velocity impact[J]. Finite Elements in Analysis & Design, 2016, 117-118(C): 21-30. [8] Crupi V, Kara E, Epasto G, et al. Theoretical and experimental analysis for the impact response of glass fibre reinforced aluminium honeycomb sandwiches[J]. Journal of Sandwich Structures & Materials, 2016, 20: 1-28. [9] Crupi V, Epasto G, Guglielmino E. Collapse modes in aluminium honeycomb sandwich panels under bending and impact loading[J]. International Journal of Impact Engineering, 2012, 43(5): 6-15. [10] Chen Y, Hou S, Fu K, et al. Low-velocity impact response of com-posite sandwich structures: Modelling and experiment[J]. Composite Structures, 2017, 168: 322-334. [11] Ivañez I, Sanchez-Saez S. Numerical modelling of the low-velocity impact response of composite sandwich beams with honeycomb core[J]. Composite Structures, 2013, 106(12): 716-723. [12] Uğur L, Duzcukoglu H, Sahin O S, et al. Investigation of impact force on aluminium honeycomb structures by finite element analysis[J]. Journal of Sandwich Structures & Materials, 2017. [13] 周初阳, 潘晋, 吴亚锋,等. 防船撞蜂窝式复合材料夹层板的耐撞性研究[J]. 武汉理工大学学报(交通科学与工程版), 2016, 40(6): 1032-1037. [14] 袁俊俊, 李成, 铁瑛,等. 复合材料胶接修补结构疲劳性能的数值和试验研究[J]. 玻璃钢/复合材料, 2018(5): 19-24. [15] 宋广舒, 郑艳萍, 赵江铭. 复合材料沉头搭接强度与渐进损伤研究[J]. 玻璃钢/复合材料, 2017(4): 5-10. [16] 祝露, 刘伟庆, 方海,等. 腹板增强复合材料夹层板低速冲击试验与有限元分析[J]. 南京工业大学学报:自然科学版, 2017, 39(5): 126-132. |