[1] Kachanov L M. Separation failure of composite materials[J]. Polymer Mechanics, 1976, 12(5): 812-815. [2] 张斌, 何梅洪, 杨涛. 复合材料空气耦合超声检测技术[J]. 玻璃钢/复合材料, 2015(12): 94-98, 40. [3] 王强. 方向性损伤的Lamb波压电线阵扫描成像与评估[J]. 振动、测试与诊断, 2017, 37(3): 507-511. [4] Worlton D C. Experimental confirmation of Lamb waves at megacycle frequencies [J]. Journal of Applied Physics, 1961, 32(6): 967-971. [5] 徐从元, 姜文华. 疲劳金属材料非线性声学特性的实验研究[J]. 南京大学学报(自然科学), 2000, 36(3): 328-335. [6] 高桂丽, 李大勇, 董静薇, 等. 铝合金薄板疲劳裂纹的非线性声学特性[J]. 机械工程学报, 2010, 46(18): 71-76. [7] Hu H F, Staszewski W J, Hu N Q, et al. Crack detection using non-linear acoustics and piezoceramic transducers-instantaneous amplitude and frequency analysis[J]. Smart Materials & Structures, 2010, 19(6): 065017. [8] Matlack K H, Kim J Y, Jabcobs L J, et al. Review of second harmonic generation measurement techniques for material state determination in metals[J]. Journal of Nondestructive Evaluation, 2015, 34(1): 273. [9] 方漂漂, 郑慧峰, 喻桑桑, 等. 基于振动声调制的金属裂纹检测方法[J].中国机械工程, 2016, 27(11): 1497-1501. [10] 屈文忠, 李拯, 王芝, 等. 基于非线性超声调制方法的损伤识别与定位 [J]. 振动、测试与诊断, 2016, 36(5): 852-857. [11] 焦敬品, 孟祥吉, 吕洪涛, 等. 基于赫兹接触的板中裂纹非线性兰姆波检测方法研究[J]. 机械工程学报, 2017, 53(12): 60-69. [12] 邓明晰. 层状固体结构表面性质的非线性兰姆波定征方法[J]. 航空学报, 2006, 27(4): 713-719. [13] Zhao Y, Li F, Cao P, et al. Generation mechanism of nonlinear ultrasonic Lamb waves in thin plates with randomly distributed cracks[J]. Ultrasonics, 2017, 79: 60-67. [14] Soleimanpour R, Ng C T. Locating delaminations in laminated composite beams using nonlinear guided waves[J]. Engineering Structures, 2017, 131: 207-219. [15] Liu X, Bo L, Yang K, et al. Locating and imaging contact delamination based on chaotic detection of nonlinear Lamb waves[J]. Mechanical Systems & Signal Processing, 2018, 109: 58-73. [16] Yelve N P, Mitra M, Mujumdar P M. Detection of delamination in composite laminates using Lamb wave based nonlinear method[J]. Composite Structures, 2017, 159: 257-266. [17] Rauter N, Lammering R, Kühnrich T. On the detection of fatigue damage in composites by use of second harmonic guided waves[J]. Composite Structures, 2016, 152(15): 247-258. [18] Bermes C, Kim J Y, Qu J M, et al. Experimental characterization of material nonlinearity using Lamb waves[J]. Applied Physics Letters, 2007, 90(2): 2067-2073. [19] Deng M X. Analysis of second-harmonic generation of Lamb modes using a modal analysis approach[J]. Journal of Applied Physics, 2003, 94(6): 4152-4159. [20] Lee T H, Jhang K Y. Experimental investigation of nonlinear acoustic effect at crack[J]. NDT & E International, 2009, 42(8): 757-764. [21] Yang Y, Ng C T, Kotousov A, et al. Second harmonic generation at fatigue cracks by low-frequency Lamb waves: Experimental and numerical studies[J]. Mechanical Systems and Signal Processing, 2018, 99(15): 760-773. [22] Zhou C, Hong M, Su Z Q. Evaluation of fatigue cracks using nonlinearities of acousto-ultrasonic waves acquired by an active sensor network[J]. Smart Materials and Structures, 2013(22): 015018. [23] Baid H, Schaal C, Samajder H, et al. Dispersion of Lamb waves in a honeycomb composite sandwich panel[J]. Ultrasonics, 2015, 56: 409-416. [24] Bathe K J. Finite element procedures in engineering analysis[M]. New Jersey: Prentice-Hall, 1982. [25] 陈勇强, 肖强, 陈亮, 等. 基于模态分析法的复合材料频散曲线特性[J]. 实验室研究与探索, 2016, 35(4): 12-16. [26] Rose J L. Ultrasonic Waves in Solid Media[M]. Cambridge: Cambridge University Press, 1999. [27] 刘瑶璐, 胡宁, 邓明晰, 等. 板壳结构中的非线性兰姆波[J].力学进展, 2017, 47(1): 503-533. |