[1] 江见鲸, 李杰, 金伟良. 高等混凝土结构理论[M]. 北京:中国建筑工业出版社, 2007. [2] 过镇海. 钢筋混凝土原理·第3版[M]. 北京:清华大学出版社, 2013. [3] Romualdi J P, Mandel J A. Tensile strength of concrete affected by uniformly distributed and closely spaced short lengths of wire reinforcement[J]. ACI Structural Journal, 1964, 61(6): 27-37. [4] Li V C, Leung C K Y. Steady-state and multiple cracking of short random fiber composites[J]. Journal of Engineering Mechanics, 1992, 118(11): 2246-2264. [5] Li V C, Stang H, Krenchel H. Micromechanics of crack bridging in fiber-reinforced concrete[J]. Materials & Structures, 1993, 26(8): 486-494. [6] 俞家欢, 魏正峰, 刘明, 等. 钢筋增强PP ECC梁滞回性能试验研究[J]. 混凝土与水泥制品, 2013(3): 34-39. [7] Yu K Q, Yu J T, Dai J G, et al. Development of ultra-high performance engineered cementitious composites using polyethylene (PE) fibers[J]. Construction & Building Materials, 2018, 158: 217-227. [8] Li V C, Wang S, Wu C. Tensile strain-hardening behavior of polyvinyl alcohol engineered cementitious composite (PVA-ECC)[J]. ACI Materials Journal, 2001, 98(6): 483-492. [9] 江世永, 龚宏伟, 姚未来, 等. ECC材料力学性能与本构关系研究进展[J]. 材料导报, 2018, 32(23): 4192-4204. [10] 江世永, 陶帅, 姚未来, 等. 高韧性纤维混凝土单轴受压性能及尺寸效应[J]. 材料导报, 2017, 31(24): 161-168. [11] 江世永, 陶帅, 飞渭, 等. 高韧性纤维混凝土受弯性能试验研究[J]. 工业建筑, 2018(6): 111-118. [12] Xu S L, Cai X R. Experimental study and theoretical models on compressive properties of ultra high toughness cementitious composites[J]. Journal of Materials in Civil Engineering, 2010, 22(10): 1067-1077. [13] Li V C. Progress and application of engineered cementitious composites[J]. Journal of the Chinese Ceramic Society, 2007, 35(4): 531-536. [14] Zhou J, Pan J, Leung C K Y. Mechanical behavior of fiber-reinforced engineered cementitious composites in uniaxial compression[J]. Journal of Materials in Civil Engineering, 2015, 27(1): 04014111. [15] Mechtcherine V, Silva F D A, Müller S, et al. Coupled strain rate and temperature effects on the tensile behavior of strain-hardening cement-based composites (SHCC) with PVA fibers[J]. Cement and Concrete Research, 2012, 42(11): 1417-1427. [16] 徐世烺, 李贺东. 超高韧性水泥基复合材料研究进展及其工程应用[J]. 土木工程学报, 2008, 41(6): 45-60. [17] Fischer G, Li V C. Effect of matrix ductility on deformation behavior of steel reinforced ECC flexural members under reversed cyclic loading conditions[J]. ACI Structural Journal, 2002, 99(6): 781-790. [18] Kanda T, Watanabe S. Application of pseudo strain hardening cementitious composites to shear resistant structural elements[C]//Proceedings of FRAMCOS-3. Freiburg, Germany: 1998: 1477-1490. [19] 杨忠, 刘成建, 张文健, 等. 钢筋增强高韧性水泥基复合材料梁受剪延性分析[J]. 人民长江, 2014(13): 79-81. [20] Yuan F, Pan J, Dong L, et al. Mechanical behaviors of steel reinforced ECC or ECC/concrete composite beams under reversed cyclic loading[J]. Journal of Materials in Civil Engineering, 2013, 26(8): 04014047. [21] 吴敬宇, 成贵军, 李惠. 玄武岩纤维及其复合筋的耐久性能研究[J]. 玻璃钢/复合材料, 2011(5): 72-75. [22] 江世永, 飞渭, 李炳宏, 等. 复合纤维筋混凝土结构设计与施工[M]. 北京: 国建筑工业出版社, 2017. [23] 冯鹏. 复合材料在土木工程中的发展与应用[J]. 玻璃钢/复合材料, 2014(9): 99-104. [24] Chen J, Jiang S Y, Zeng X, et al. Performance of a transfer beam with hybrid reinforcement of CFRP bars and steel bars under reversed cyclic loading[J]. Science & Engineering of Composite Materials, 2015, 24(4): 621-630. [25] 吴世娟, 江世永, 陶帅, 等. CFRP筋转换梁框支剪力墙抗震性能试验的数值模拟仿真方法[J]. 土木建筑与环境工程, 2017, 39(5): 16-22. [26] 江世永. 复合纤维材料混凝土结构的抗震性能[M]. 北京: 中国建筑工业出版社, 2018. [27] Chiahwan Y, Han J B. The mechanical behavior of fiber reinforced PP ECC beams under reverse cyclic loading[J]. Advances in Materials Science & Engineering, 2014(2): 1-9. [28] 俞家欢, 邹静辉. FRP筋增强PP ECC梁滞回性能试验研究[J]. 土木工程学报, 2012(s2): 84-88. [29] 俞家欢. 超强韧性纤维混凝土的性能及应用[M]. 北京: 中国建筑工业出版社, 2012. [30] Fischer G. Effect of matrix ductility on the performance of reinforced[J]. Conditions,” Proceedings of the JCI International Workshop on Ductile Fiber Reinforced Cementitious Composites, 2002: 269-278. [31] 汪梦甫, 张旭. 高轴压比下PVA-ECC柱抗震性能试验研究[J]. 湖南大学学报(自然科学版), 2017, 44(5): 1-9. [32] Shan Q, Pan J, Chen J. Mechanical behaviors of steel reinforced ECC/concrete composite columns under combined vertical and horizontal loading[J]. Journal of Southeast University (English Edition), 2015, 31(2): 259-265. [33] Pan J L, Jie G U, Chen J H. Theoretical modeling of steel reinforced ECC column under eccentric compressive loading[J]. Science China Technological Sciences, 2015, 58(5): 889-898. [34] Pan J, Mo C, Xu L, et al. Seismic behaviors of steel reinforced ECC/RC composite columns under low-cyclic loading[J]. Journal of Southeast University(English Edition), 2017, 33(1): 70-78. [35] Xu L, Pan J, Chen J. Mechanical behavior of ECC and ECC/RC composite columns under reversed cyclic loading[J]. Journal of Materials in Civil Engineering, 2017, 29(9): 04017097. [36] 吴畅. 考虑剪切效应的RECC柱及框架结构抗震性能研究[D]. 南京: 东南大学, 2016. [37] Wu C, Pan Z, Mo Y L, et al. Modeling of shear-critical reinforced engineered cementitious composites members under reversed cyclic loading[J]. Structural Concrete, 2018. [38] Wu C, Pan Z, Su R K L, et al. Seismic behavior of steel reinforced ECC columns under constant axial loading and reversed cyclic lateral loading[J]. Materials & Structures, 2017, 50(1): 78. [39] Wu C, Pan Z, Kim K S, et al. Theoretical and experimental study of effective shear stiffness of reinforced ECC columns[J]. International Journal of Concrete Structures & Materials, 2017, 11(4): 585-597. [40] 李雪阳. CFRP筋高韧性水泥基复合材料柱抗震性能研究[D]. 重庆: 后勤工程学院, 2017. [41] Gencturk, Elnashai, Amr S. Numerical modeling and analysis of ECC structures[J]. Materials & Structures, 2013, 46(4): 663-682. [42] Gencturk B, Elnashai A S, Lepech M D, et al. Behavior of concrete and ECC structures under simulated earthquake motion[J]. Journal of Structural Engineering, 2013, 139(3): 389-399. [43] Fukuyama H, Suwada H. Experimental response of HPFRCC dampers for structural control[J]. Journal of Advanced Concrete Technology, 2003, 1(3): 317-326. [44] Mitamura H, Sakata N, Shakushiro K. Application of overlay reinforcement method on steel deck utilizing engineered cementitious composites-Mihara bridge[J]. Bridge and Foundation Engineering, 2005, 39(8): 88-91. [45] Kunieda M, Rokugo K. Recent progress on HPFRCC in Japan required performance and applications[J]. Journal of Advanced Concrete Technology, 2006, 4(1): 19-33. [46] 唐九如. 钢筋混凝土框架节点抗震[M]. 南京: 东南大学出版社, 1989. [47] Bayasi Z, Gebman M. Reduction of lateral reinforcement in seismic beam-column connection via application of steel fibers[J]. ACI Structural Journal, 2002, 99(6): 772-780. [48] Parramontesinos G J. Highly damage-tolerant beam-column joints through use of high-performance fiber-reinforced cement composites[J]. ACI Structural Journal, 2005, 102(3): 487-495. [49] 苏骏, 徐世烺. 高轴压比下UHTCC梁柱节点抗震性能试验[J]. 华中科技大学学报(自然科学版), 2010(7): 53-56. [50] 苏骏, 徐世烺. 超高韧性水泥基材料新型框架节点性能研究[J]. 世界地震工程, 2012, 28(2): 110-114. [51] 王激扬, 马卫强, 万成霖, 等. PE纤维水泥基复合材料框架梁柱节点的抗震性能试验研究[J]. 世界地震工程, 2017, 33(4): 180-186. [52] 许准. ECC/RC组合梁柱边节点的抗震性能试验和理论研究[D]. 南京: 东南大学, 2012. [53] 刘桐, 陈娟, 刘友忠, 等. 基于水泥基复合材料连接的装配式框架节点抗震性能试验研究[J]. 工业建筑, 2017(11): 84-88. [54] Fischer G. Intrinsic response control of moment-resisting frames utilizing advanced composite materials and structural elements[J]. ACI Structural Journal, 2003, 100(2): 166-176. [55] 刘籍蔚, 潘钻峰, 孟少平, 等. ECC/RC组合框架结构静力弹塑性抗震分析[C]//全国结构工程学术会议. 2014. [56] 马涛. 装配整体式ECC/RC组合框架抗震性能研究[D]. 南京: 东南大学, 2013. |