玻璃钢/复合材料 ›› 2019, Vol. 0 ›› Issue (9): 110-118.
杨坤, 张玮, 杜度
收稿日期:
2018-10-18
出版日期:
2019-09-28
发布日期:
2019-09-28
作者简介:
杨坤(1986-),男,博士,工程师,主要从事舰船复合材料结构应用工程方面的研究,yangkuntuo@163.com。
YANG Kun, ZHANG Wei, DU Du
Received:
2018-10-18
Online:
2019-09-28
Published:
2019-09-28
摘要: 复合材料夹层结构是一类由纤维增强复合材料上下表层和芯层复合组成,具有比强度高、阻尼性能好、纤维铺层可设计、质量轻等优点的结构,常作为工程减振结构使用,研究其动力学特性对该类工程设计具有很强的指导意义。本文从夹层结构力学分析模型、芯材粘弹性材料本构模型、粘弹性夹层结构动力学特性分析方法、粘弹性复合材料夹层梁/板、离散芯材复合材料夹层结构等方面,对国内外复合材料夹层结构动力学特性研究成果进行了回顾、梳理和归纳,总结得出了不同结构动力学特性的计算方法及其局限性,指出了不同类型结构理论或数值计算存在的突破难点,以及复合材料夹层结构动力学特性未来研究的趋势。研究认为:过往,结构阻尼性能预报材料遵循不考虑频变到频变特性,逐步逼近粘弹性特性的历程,研究对象具有从规则对象到大型复杂外形结构的趋势;未来,在理论求解方面,夹层梁/板动响应封闭解还需深入研究;对于结构动态响应研究,针对自由铺层表层结构的动力学特性求解还需结合板条传递函数法进行进一步研究;在应用研究方面,以降低计算规模和难度,寻求能逼近材料力学行为且适应数值求解的材料本构模型,并相应完善数值求解方法将成为研究热点。
中图分类号:
杨坤, 张玮, 杜度. 复合材料夹层结构动力学特性研究进展[J]. 玻璃钢/复合材料, 2019, 0(9): 110-118.
YANG Kun, ZHANG Wei, DU Du. THE RESEARCH PROGRESS OF DYNAMIC CHARACTERISTICS OF THE COMPOSITE SANDWICH STRUCTURE[J]. Fiber Reinforced Plastics/Composites, 2019, 0(9): 110-118.
[1] Edward M, Kerwin J. Damping of flexural waves by a constrained viscoelastic layer[J]. The Journal of the Acoustical Society America, 1959, 31(7): 952-962. [2] Mead D J. The double-skin damping configuration[R]. Southampton: University of Southampton, Department of Aeronautics & Astronautics, 1962. [3] Raoand Y V K. Vibrations of unsymmetrical sandwich beams and plates with viscoelastic cores[J]. Journal of Sound and Vibration, 1974, 34(3): 309-326. [4] Kant T, Swaminathan K. Analytical solution for free vibration of laminated composite and sandwich plates base on a higher-order refined theory[J]. Composite Structrues, 2001, 53(1): 73-85. [5] Kristensena R F, Nielsen K L, Mikkelsen L P. Numerical studies of shear damped composite beams using aconstrained damping layer[J]. Composite Structures, 2008, 83: 304-311. [6] WU Z, CHEN W J. An assessment of several displacement-based theories for the vibration and stability analysis of laminated composite and sandwich beams[J]. Composite Structures, 2008, 84: 337-349. [7] Eric M A, Daniel J I. Effects of modeling assumptions on loss factors predicted for viscoelastic sandwich beams[C]//Smart Structure and Materials 1999: Passive Damping and Isolation. Phoenix, America: 1999. [8] Eric M A, Daniel J I. Studies on the kinematic asumptions for sandwich beams[C]//Conference on Passive Damping and Isolation, at the Smart Structure and Materials. San Diego, America: 1997. [9] Yong B C, Ronald C A. An improved theory and finite-element model for laminated composite and sandwich beams using first-order Zig-zag sublaminate approximations[J]. Composite Structrues, 1997, 34(3-4): 281-298. [10] Kapuria S, Dumir P C, Jain N K. Assessment of Zigzag theory for static loading, buckling, free and forced response of composite and sandwich beams[J]. Composite Structures, 2004, 64(3-4): 317-327. [11] 杨挺青. 粘弹性力学[M]. 武汉: 华中理工大学出版社, 1990. [12] Hocine B, Mourad I. Computation of the relaxation and creep functions of elastomers from harmonic shear modulus[J]. Mechanics of Time-Dependent Materials, 2011, 15(2): 119-138. [13] 孙海忠, 张卫. 服从分数导数kelvin本构模型的粘弹性阻尼器的阻尼性能分析及试验研究[J]. 振动工程学报, 2008, 21(1): 48-53. [14] Golla D F, Hughes P C. Dynamics of viscoelastic structures-a time-domain, finite element formulation[J]. Journal of Applied Mechanics, 1985, 52(4): 897-907. [15] 郭亚娟, 李惠清, 孟光, 等. 粘弹性自由层阻尼悬臂梁的有限元模型[J]. 上海交通大学学报, 2007, 41(9): 1538-1541. [16] Hong Y, He X D, Wang R G. Vibration and damping analysis of a composite blade[J]. Materials & Design, 2011, 34: 98-105. [17] Zhang S H, Chen H L. A study on the damping characteristics of laminated composites with integral viscoelastic layers[J]. Composite Structures, 2006, 74(1): 63-69. [18] Meunier M, Shenoi R A. Dynamic analysis of composite sandwich plates with damping modelled using high-order shear deformation theory[J]. Composite Structures, 2001, 54(2-3): 243-254. [19] Eslie R, Castro M. Vibration-based stiffness and damping matrices updating of a sandwich composite beam[D]. Mayaguez: University of Puerto Rico, 2005. [20] Mctavish D J, Hughes P C. Modeling of linear viscoelastic space structures[J]. Journal of Vibration and Acoustics, 1993, 115(1): 103-110. [21] Barbosa F S, Farage M C R. A finite element model for sandwich viscoelastic beams: experimental and numerical assessment[J]. Journal of Sound and Vibration, 2008, 317(1-2): 91-111. [22] Aytac A, Ibrahim O. Vibration analysis of composite sandwich beams with viscoelasticcore by using differential transform method[J]. Composite Structures, 2010, 92(12): 3031-3039. [23] Zhou J P, Feng Z G. Transient response analysis of one-dimensional distributed parameter systems[J]. International Journal of Solids and Structures, 1999, 36(19): 2807-2824. [24] Yang B, Tan C A. Transfer functions of one-dimensional distributed parameter system[J]. AIAA Journal, 1992, 59(4): 1009-1014. [25] 李恩奇. 基于分布参数传递函数方法的被动约束层阻尼结构动力学分析[D]. 长沙: 国防科学技术大学, 2007. [26] 李恩奇, 李道奎, 唐国金, 等. 基于传递函数方法的局部覆盖环状CLD圆柱壳动力学分析[J]. 航空学报, 2007, 28(6): 1487-1494. [27] 李恩奇, 唐国金, 雷勇军. 约束层阻尼板动力学问题的传递函数解[J]. 国防科技大学学报, 2008, 30(1): 1-5. [28] 李海阳. 数学物理问题的数值分布传递函数方法[D]. 长沙: 国防科技大学, 1999. [29] Chyanbin H, Chang W C, Gai H S. Vibration suppression of composite sandwich beams[J]. Journal of Sound and Vibration, 2004, 272(1-2): 1-20. [30] Jian S H, Chyanbin H. Free vibration of delaminated composite sandwich beams[J]. AIAA Journal, 1995, 33(10): 1911-1918. [31] Zapfe J A, Lesieutre G A. A discrete layer beam finite element for the dynamic analysis of composite sandwich beams with integral damping layers[J]. Composite & Structrues, 1999, 70(6): 647-666. [32] Zapfe J A, Lesieutre G A, Wodfke H W. Damping analysis of composite sandwich beams using a discrete layer finite element with comparison to experimental data[J]. AIAA Journal, 1995, 12(13): 470-479. [33] Ganapathia M, Patela B P, Boisseb P. Flexural loss factors of sandwich and laminated composite beams using linear and nonlinear dynamic analysis[J]. Composites: Part B, 1999, 30(3): 245-256. [34] Plagianakos T S, Saravanos D A. High-order layer wise mechanics and finite element for the damped dynamic characteristics of sandwich composite beams[J]. International Journal of Solids and Structures, 2004, 41(24-25): 6853-6871. [35] Marco G, Alexander T, Marco D S. C0 beam elements based on the refined Zigzag theory for multilayered composite and sandwich laminates[J]. Composite Structures, 2011, 93(11): 2882-2894. [36] Arvin H, Sadighi M, Ohadi A R. A numerical study of free and forced vibration of composite sandwich beam with viscoelastic core[J]. Composite Structures, 2010, 92(4): 996-1008. [37] 李天奇, 雷勇军, 唐国金, 等. 基于传递函数方法的约束层阻尼梁动力学分析[J]. 振动与冲击, 2007, 26(2): 75-78. [38] Chaudry A H. Passive stand-off layer damping treatment: theory and experiments[D]. Baltimore: Univeristy of Maryland, 2006. [39] Susanto K S. Design, modeling and analysis of piezoelectric forceps actuator[D]. California: University of Southern Colifornia, 2007. [40] 刘畅, 郭靳时. 用差分法求解正交各向异性夹层板的弹性弯曲方程[J]. 吉林建筑工程学院学报, 1999(1): 1-7. [41] 张晓芳. 表层正交异性材料夹层板弯曲平衡方程及边界条件[J]. 江苏理工大学学报, 1998, 19(5): 94-100. [42] Cupial P, Niziol J. Vibration and damping analysis of a three-layered composite plate with a viscoelastic mid-layer[J]. Journal of Sound and Vibration, 1995, 183(1): 99-114. [43] Terry H, Liviu L. Flexural free vibration of sandwich flat panels with laminated anisotropic face sheets[J]. Journal of Sound and Vibration, 2006, 297(3-5): 823-841. [44] Khare R K, Kant T, Garg A K. Free vibration of composite and sandwich laminates with a higher-order facet shell element[J]. Composite Structures, 2004, 65(3-4): 405-418. [45] Rao M K, Desai Y M. Analytical solutions for vibrations of laminated and sandwich plates using mixed theory[J]. Composite Structrues, 2004, 63(3-4): 361-373. [46] Liu Q A, Zhao Y. Natural frequency analysis of a sandwich panel with soft core based on a refined shear deformation model[J]. Composite Structures, 2006, 72(8): 364-374. [47] Meunier M, Shenoi R A. Dynamic ananlysis of compisite sandwich plate with damping modelled using high-order shear deformation theory [J]. Composite Structures, 2001, 54(2-3): 243-254. [48] Lee L J, Fan Y J. Bending and vibration analysis of composite sandwich plates[J]. Computers & Structures, 1996, 60(1): 103-112. [49] 白瑞祥, 张志峰, 陈浩然. 基于Zig-Zag变形假定的复合材料夹层板的自由振动[J]. 力学季刊, 2004, 25(4): 528-534. [50] Wu Z, Chen W J. Free vibration of laminated composite and sandwich plates using global-local higher-order theory[J]. Journal of Sound and Vibration, 2006, 298(1-2): 333-349. [51] Etkovic M C, Vuksanovic D. Bending, free vibrations and buckling of laminated composite and sandwich plates using a layerwise displacement model[J]. Composite Structures, 2009, 88(2): 219-227. [52] 师俊平, 刘协会, 赵巨才, 等. 复合材料夹层板的振动及阻尼分析[J]. 应用力学学报, 1996, 13(2): 132-136. [53] Nayak A K, Moy S S J, Shenoi R A. Free vibration analysis of composite sandwich plates based on reddy′s higher-order theory[J]. Composites:Part B, 2002, 33(7): 505-519. [54] Nayak A K, Shenoi R A, Moy S S J. Transient response of composite sandwich plates[J]. Composite Structrues, 2004, 64(3-4): 249-267. [55] Dai X J, Lin J H, Chen H R. Random vibration of composite structures with an attached frequency-dependent damping layer[J]. Composites:Part B, 2008, 39(2): 405-413. [56] Cunningham P R, White R G, Aglietti G S. The effects of various design parameters on the free vibration of doubly curved composite sandwich panels[J]. Journal of Sound and Vibration, 2000, 230(3): 617-648. [57] Sung Y, Kam Y S. A finite element formulation for composite laminates with smart constrained layer damping[J]. Advances in Engineering Software, 2000, 31(8-9): 529-537. [58] Gibson L J, Ashby M F. Cellular Solids. Structures and properties[M]. Oxford: Pergamon Press, 1988. [59] Karako A, Freund J. Experimental studies on mechanical properties of cellular structures using nomex honeycomb cores[J]. Composite Structures, 2012, 94(6): 2017-2024. [60] Cheng Q H, Lee H P, Lu C. A numerical analysis approach for evaluating elastic constants of sandwich structures with various cores[J]. Composite Structures, 2005, 74(2): 226-236. [61] 富明慧, 尹久仁. 蜂窝芯层的等效弹性参数[J]. 力学学报, 1999, 31(1): 114-123. [62] Fung T C, Tan K H, Lok T S. Elastic constants for z-core sandwich panels[J]. Journal of Structural Engineering, 1994, 120(10): 3046-3055. [63] Nordstrand T, Carlsson L A, Allen H G. Transverse shear stiffness of structural core sandwich[J]. Composite Structrues, 1994, 27(3): 317-348. [64] Lok T S, Cheng Q H. Elastic stiffness properties and behaviour of truss-core sandwich panel[J]. Journal of Structural Engineering, 2000, 126(5): 552-559. [65] Taylor C M, Smith C W, Miller W. The effects of hierarchy on the in-plane elastic properties of honeycombs[J]. International Journal of Solids and Structures, 2011, 48(9): 1330-1339. [66] 吴晖, 俞焕然. 四边简支正交各向异性波纹型夹心矩形夹层板的固有频率[J]. 应用数学和力学, 2001, 22(9): 919-927. [67] Lok T S, Cheng Q H. Free and forced vibration of simply supported, orthotropic sandwich panel[J]. Computer & Structrues, 2001, 79(3): 301-312. [68] Lok T S, Cheng Q H. Bending and forced vibration response of clamped orthotropic thick plate and sandwich panel[J]. Journal of Sound and Vibration, 2001, 245(1): 63-78. [69] Lok T S, Cheng Q H. Free vibration of clamped orthotropic sandwich panel[J]. Journal of Sound and Vibration, 2000, 229(2): 311-327. [70] Li Y Q, Li F, Zhu D W. Geometrically nonlinear free vibrations of the symmetric rectangular honeycomb sandwich panels with simply supported boundaries[J]. Composite Structrues, 2010, 92(5): 1110-1119. [71] Li Y Q, Zhu D W. Geometrically nonlinear forced vibrations of the symmetric honeycomb sandwich panels affected by the water[J]. Composite Structures, 2011, 93(2): 880-888. [72] Saha G C, Kalamkarov A L, Georgiades A V. Effective elastic characteristics of honeycomb sandwich composite shells made of generally orthotropic materials[J]. Composites: Part A, 2007, 38(6): 1533-1546. [73] Marc R B, Xavier B. Measurement of relevant elastic and damping material properties in sandwich thick plates[J]. Journal of Soundand Vibration, 2011, 330(25): 6098-6121. [74] 徐胜今, 孔宪仁, 王本利. 正交异性蜂窝夹层板动静力学问题的等效分析方法[J]. 复合材料学报, 2000, 17(3): 92-96. [75] 刘畅, 钟善桐, 苗若愚. 正交各向异性夹层板的基本方程[J]. 吉林建筑工程学院学报, 1997(4): 1-6. [76] 徐胜今, 宋宇, 王本利. 正交异性蜂窝夹层板的动力学分析[J]. 复合材料学报, 1998, 15(4): 74-80. [77] 王萍萍, 罗文波, 邹经湘. 碳纤维蜂窝夹层结构动特性分析[J]. 复合材料学报, 2002, 19(6): 134-137. [78] Liu J, Au F T K, Cheng Y S. A semi-analytical method for bending, buckling and free vibration analyses of sandwieh panels with square honeycomb cores[J]. International Journal of Structural Stability and Dynamics, 2010, 10(1): 127-151. [79] Xin F X, Lu T J. Analytical modeling of wave propagation in orthogonally rib-stiffened sandwich structures: sound radiation[J]. Computers & Structures, 2011, 89(5-6): 507-516. [80] Xin F X, Lu T J. Sound radiation of orthogonally rib-stiffened sandwich structures with cavity absorption[J]. Composites Science and Technology, 2010, 70(15): 2198-2206. [81] 习仲萍, 曹建英. 正交加筋双层板的挠曲微分方程[J]. 现代机械, 2011(1): 55-56. [82] 刘均, 程远胜. 考虑芯层离散特性的方形蜂窝夹层板自由振动分析[J]. 固体力学学报, 2009, 30(1): 90-94. [83] 刘均, 程远胜. 考虑几何特征的方形蜂窝夹层板总体屈曲载荷求解方法[J]. 工程力学, 2009, 26(7): 245-251. [84] 吴梵, 杨坤, 梅志远. 正交加筋复合材料夹层板弯曲问题求解[J]. 船舶力学, 2013, 17(1-2): 92-101. [85] 杨坤, 梅志远, 李华东. 正交加筋复合材料夹层板自由振动分析[J]. 上海交通大学学报, 2014, 48(6): 863-869. [86] Burton W S, Noor A K. Assessment of continuum models for sandwich panel honeycomb cores[J]. Computer Methods in Applied Mechanics and Engineering, 1997, 145(3-4): 341-360. [87] Burlayenkoa V N, Sadowskib T. Influence of skin/core debonding on free vibration behavior of foam and honeycomb cored sandwich plates[J]. International Journal of Non-LinearMechanics, 2010, 45(10): 959-968. [88] Rathbun H J, Radford D D, Xue Z. Performance of metallic honeycomb-core sandwich beams under shock loading[J]. International Journal of Solids and Structures, 2006, 43 (6): 1746-1763. [89] Wang T, Ma M, Yu W L, et al. Mechanical response of square honeycomb sandwich plate with asymmetric face sheet subjected to blast loading[J]. Procedia Engineering, 2011, 23: 457-463. [90] Russell B P, Liu T, Fleck N A. The soft impact of composite sandwich beams with a square-honeycomb core[J]. International Journal of Impact Engineering, 2011, 48: 65-81. [91] Chen Y, Zhang Z Y, Wang Y. Crush dynamics of square honeycomb thin rubber wall[J]. Thin-Walled Structures, 2009, 47(12): 1447-1456. [92] Dharmasena K P, Wadley H N G, Xue Z Y. Mechanical response of metallic honeycomb sandwich panel structures to high-intensity dynamic loading [J]. International Journal of Impact Engineering, 2008, 35(9): 1063-1074. |
[1] | 李辉, 赵春江, 梁建国, 曾光, 王蕊, 边强. 变刚度复合材料层合板力学特性及失效机理分析[J]. 复合材料科学与工程, 2022, 0(7): 5-10. |
[2] | 宫唯康, 刘晓阳, 荆玉才, 项俊宁, 李相国, 杨国涛. 预应力CFRP板加固钢-混凝土组合梁受弯性能的有限元分析[J]. 复合材料科学与工程, 2022, 0(7): 11-19. |
[3] | 赵雄翔, 孙鹏文, 李建东. 基于应变能的风力机叶片铺层结构优化设计[J]. 复合材料科学与工程, 2022, 0(7): 20-24. |
[4] | 冯钰茹, 王军利, 张宝军, 刘志远, 李金洋, 张宝升. 复合材料叶片建模及铺层参数对强度的影响分析[J]. 复合材料科学与工程, 2022, 0(7): 25-31. |
[5] | 常腾飞, 湛利华, 李树健, 潘阳. 不同成型方法的树脂基复合材料帽形结构共固化成型质量研究[J]. 复合材料科学与工程, 2022, 0(7): 32-38. |
[6] | 黄东辉, 曾少华. 自组装蒙脱土-碳纳米管对玻纤增强复合材料力学及界面性能的影响[J]. 复合材料科学与工程, 2022, 0(7): 39-44. |
[7] | 满珈诚, 侯进森, 李哲夫, 岳广全, 徐鹏, 姜碧羽, 刘卫平. 连续碳纤维增强热固性预浸料压实性能的试验研究[J]. 复合材料科学与工程, 2022, 0(7): 45-51. |
[8] | 林梅, 张铁军, 冯宇, 王旗, 武梦科. 湿热/干燥环境交替作用下碳纤维复合材料的吸湿/脱湿特性[J]. 复合材料科学与工程, 2022, 0(7): 52-59. |
[9] | 高慧, 罗发, 渠永平, 王春海. SiCf/Al2O3/Mullite复合材料的制备及吸波性能[J]. 复合材料科学与工程, 2022, 0(7): 60-65. |
[10] | 王东萍. 磁性聚吡咯基复合材料吸附电镀废水中铜离子[J]. 复合材料科学与工程, 2022, 0(7): 66-70. |
[11] | 鲁晓锋, 张颜明, 蒙丹, 苏成功. 全尺寸叶片静力测试中ANSYS梁模型应用与研究[J]. 复合材料科学与工程, 2022, 0(7): 71-74. |
[12] | 宦胜民, 黄小波, 杨润苗, 向萌. 超支化不饱和聚酯的制备及其应用研究[J]. 复合材料科学与工程, 2022, 0(7): 75-80. |
[13] | 王雅娜, 赵魏. 复合材料Ⅱ型分层ENF试验数据处理方法对比分析[J]. 复合材料科学与工程, 2022, 0(7): 81-92. |
[14] | 田会方, 张国武, 吴迎峰, 任政. 水处理罐缠绕工艺中玻璃纤维团打结装置设计与分析[J]. 复合材料科学与工程, 2022, 0(7): 93-98. |
[15] | 冯倩倩, 朱方龙. 聚合物辅助沉积法制备导电玄武岩纤维[J]. 复合材料科学与工程, 2022, 0(7): 99-102. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||