[1] Unnikrishnan K P, Thachil E T. Aging and thermal studies on epoxy resin modified by epoxidized novolacs[J]. Journal of Macromolecular Science: Part D-Reviews in Polymer Processing, 2006, 45(4): 6. [2] Unnikrishnan K P, Thachil E T. Toughening of epoxy resins[J]. Designed Monomers & Polymers, 2006, 9(2): 129-152. [3] Mustata F R, Tudorachi N. Epoxy resins cross-linked with rosin adduct derivatives. cross-linking and thermal behaviors[J]. Industrial & Engineering Chemistry Research, 2010, 49(24): 12414-12422. [4] 中国民用航空局. 运输类飞机适航标准(第四次修订): CCAR-25-R4[S]. 2011. [5] Biswas B, Kandola B K, Horrocks A R, et al. A quantitative study of carbon monoxide and carbon dioxide evolution during thermal degradation of flame retarded epoxy resins[J]. Polymer Degradation & Stability, 2007, 92(5): 765-776. [6] Tang S, Qian L, Qiu Y, et al. High-performance flame retardant epoxy resin based on a bi-group molecule containing phosphaphenanth-rene and borate groups[J]. Polymer Degradation & Stability, 2018. [7] Administration, Federal A. Composite Aircraft Structure. s.l.: U.S. Department of Transportation, Septemeber 8, 2009. AC: 20-107B.Composite aircraft structure[S]. Washington D.C., US: Federal Aviation Administration, Department of Transportation, 2009. [8] Qian L J, Ye L J, Xu G Z, et al. The non-halogen flame retardant epoxy resin based on a novel compound with phosphaphenanthrene and cyclotriphosphazene double functional groups[J]. Polymer Degradation & Stability, 2011, 96(6): 1118-1124. [9] 叶龙健, 钱立军, 佟芍朋, 等. 无卤阻燃含磷环氧树脂的研究进展[J]. 中国塑料, 2010(3):11-18. [10] Henderson J B, Wiebelt J A, Tant M R. A model for the thermal response of polymer composite materials with experimental verification[J]. Journal of Composite Materials, 1985, 19(6): 579-595. [11] Henderson J B, Wiecek T E. A Mathematical model to predict the thermal response of decomposing, expanding polymer composites[J]. Journal of Composite Materials, 1987, 21(4): 373-393. [12] Mcgurn M T, Desjardin P E, Dodd A B. Thermal modeling of carbon-epoxy laminates in fire environments[C]//International Symposium on Fire Safety Science. 2011: 1193-1205. [13] Summers P T, Lattimer B Y, Case S, et al. Predicting compression failure of composite laminates in fire[J]. Composites Part A (Applied Science and Manufacturing), 2012, 43(5): 0-782. [14] Bhat T, Chevali V, Liu X, et al. Fire structural resistance of basalt fibre composite[J]. Composites Part A Applied Science & Manufacturing, 2015, 71: 107-115. [15] Bhat T, Kandare E, Gibson A G, et al. Compressive softening and failure of basalt fiber composites in fire: modelling and experimentation[J]. Composite Structures, 2017, 165: 15-24. [16] Kandare E, Kandola B, Myler P, et al. Thermo-mechanical responses of fiber-reinforced epoxy composites exposed to high temperature environments. Part I: experimental data acquisition[J]. Journal of Composite Materials, 2010, 44(26): 3093-3114. [17] Kandare E, Kandola B K, Mccarthy E D, et al. Fiber-reinforced epoxy composites exposed to high temperature environments. Part Ⅱ: modeling mechanical property degradation[J]. Journal of Composite Materials, 2011, 45(14): 1511-1521. [18] 李翰, 樊茂华, 冯振宇, 等. 玻璃纤维/酚醛复合材料热响应预报方法[J].复合材料学报. https://doi.org/10.13801/j.cnki.fhclxb.20180819.001. [19] 马百平, 李翰, 邹田春, 等. 运输类飞机的机身抗烧穿性适航要求解析[J]. 航空工程进展, 2017, 8(3): 308-314. [20] Mouritz A P, Gibson A G. Fire properties of polymer composite materials[M]. Springer Netherlands, 2006. [21] 李玉臻, 杨宏宇. 含二羟基DOPO衍生物阻燃改性环氧树脂的制备与热性能研究[J]. 火灾科学, 2013, 22(2): 77-83. [22] Rakotomalala M, Wagner S, Döring M. Recent developments in halogen free flame retardants for epoxy resins for electrical and electronic applications[J]. Materials, 2010, 3(8): 4300-4327. [23] Jeng R J, Shau S M, Lin J J, et al. Flame retardant epoxy polymers based on all phosphorus-containing components[J]. European Polymer Journal, 2002, 38(4): 683-693. |