[1] FARDIN E, CHRISTOS K. An efficient approach to determine compression after impact strength of quasi-isotropic composite laminates[J]. Composites Science and Technology, 2014, 98: 28-35. [2] VIEILLE B, CASADO V M, BOUVET C. Influence of matrix toughness and ductility on the compression-after-impact behavior of woven-ply thermoplastic- and thermosetting composites: A comparative study[J]. Composite Structures, 2014, 110: 207-18. [3] ALAATTIN A, MEHMET A, FAITH T. Impact and post impact (CAI) behavior of stitched woven-knit hybrid composites[J]. Composite Structures, 2014, 116: 243-53. [4] FENG Y, ZHANG H Y, TAN X F, et al. Effect of impact damage positions on the buckling and post-buckling behaviors of stiffened composite panel[J]. Composite Structures, 2016, 155: 184-196. [5] BONI L, FANTERIA D, LANCOTTI A. Post-buckling behaviour of flat stiffened composite panels: Experiments vs. analysis[J]. Composite Structures, 2012, 94(12): 3421-3433. [6] SUN W, GUAN Z D, YANG T O, et al. Effect of stiffener damage caused by low velocity impact on compressive buckling and failure modes of T-stiffened composite panels[J]. Composite Structures, 2018, 184: 198-210. [7] WANG X M, CAO W, DENG C H, et al. Experimental and numerical analysis for the post-buckling behavior of stiffened composite panels with impact damage[J]. Composite Structures, 2015, 133: 840-846. [8] AL-AZZAWI A S M, MCCRORY J, KAWASHITA L F, et al. Buckling and postbuckling behaviour of glare laminates containing splices and doublers. Part 1: Instrumented tests[J]. Composite Structures, 2017, 176: 1158-1169. [9] AL-AZZAWI A S M, KAWASHITA L F, FEATHERSTON C A, et al. Buckling and postbuckling behaviour of glare laminates containing splices and doublers. Part 2: Numerical modelling[J]. Composite Structures, 2017, 176: 1170-1187. [10] MASOOD S N, VISHAKH R, VISWAMURTHY S R, et al. Influence of stiffener configuration on post-buckled response of composite panels with impact damages[J]. Composite Structures, 2018, 194: 433-444. [11] LI N, CHEN P H. Experimental investigation on edge impact dam-age and compression-after-impact (CAI) behavior of stiffened composite panels[J]. Composite Structures, 2016, 138: 134-150. [12] FENG Y, HE Y T, ZHANG H Y, et al. Effect of fatigue loading on impact damage and buckling/post-buckling behaviors of stiffened composite panels under axial compression[J]. Composite Structures, 2017, 164: 248-262. [13] FENG Y, HE Y T, TAN X F, et al. Experimental investigation on different positional impact damages and shear-after-impact (SAI) behaviors of stiffened composite panels[J]. Composite Structures, 2017, 178: 232-245. [14] BAI R X, LEI Z K, WEI X, et al. Numerical and experimental study of dynamic buckling behavior of a J-stiffened composite panel under in-plane shear[J]. Composite Structures, 2017, 166: 96-103. [15] LEI Z K, BAI R X, TAO W, et al. Optical measurement on dynamic buckling behavior of stiffened composite panels under in-plane shear[J]. Optics and Lasers in Engineering, 2016, 87: 111-119. [16] RAJU G, WU Z, WEAVER P M. Buckling and postbuckling of variable angle tow composite plates under in-plane shear loading[J]. International Journal of Solids and Structures, 2015, 34: 270-287. [17] CHEN Q, QIAO P. Post-buckling analysis of composite plates under combined compression and shear loading using finite strip method[J]. Finite Elements in Analysis Design, 2014, 83: 33-42. [18] ZHANG T J, LI S L, CHANG F, et al. An experimental and numerical analysis for stiffened composite panel subjected to shear loading in hydrothermal environment[J]. Composite Structures, 2016, 138: 107-115. [19] TSAI S W. Composite design[M]. 4th ed. Dayton: Think Composites, 1988. [20] FENG Y, HE Y T, TAN X F, et al. Investigation on impact damage evolution under fatigue load and shear-after-impact-fatigue (SAIF) behaviors of stiffened composite panels[J]. International Journal of Fatigue, 2017, 100(1): 308-321. [21] ROZYLO P, DEBSKI H, KUBIAK T. A model of low-velocity impact damage of composite plates subjected to compression-after-impact (CAI) testing[J]. Composite Structures, 2017, 181: 158-170. [22] ABAR M R, TAY T E, RIDHA M, et al. On the relationship between failure mechanism and compression after impact (CAI) strength in composites[J]. Composite Structures, 2017, 182: 242-250. [23] LIU H B, BRIAN G F, TAN W. Predicting the compression-after-impact (CAI) strength of damage-tolerant hybrid unidirectional/woven carbon-fibre reinforced composite laminates[J]. Composites Part A, 2018, 105: 189-202. [24] TAN W, FALZON B G, CHIU L N S, et al. Predicting low velocity impact damage and compression-after-impact (CAI) behaviour of composite laminates[J]. Composites Part A, 2015, 71: 212-226. [25] 李念. 复合材料加筋板边缘冲击损伤及冲击后压缩失效机理分析[D]. 南京: 南京航空航天大学, 2016. [26] TSAI S W. Strength characteristics of composite materials[R]. Tech Rep NASA CR-224. USA: National Aeronautics and Space Administration, 1965. [27] TSAI S W, WU E M. General theory of strength for anisotropic materials[J]. Journal of Composite Materials, 1971, 5(1): 58-80. [28] HOFFMAN O. The brittle strength of orthotropic materials[J]. Journal of Composite Materials, 1967, 1(2): 200-206. [29] CHAMIS C C. Failure criteria for filamentary composites. Composites materials: Testing and design: ASTM STP 460[S]. Philadelphia: 1969: 336-351. [30] VINGORADOV Y I, DUMANSKII A M, STREKALOV V B. Estimating the fatigue strength characteristics of multilaminated composite materials[J]. Mechanics of Composite Materials, 1993, 29(3): 247-251. [31] JIANG Z, TENNYSON R C. Closure of the cubic tensor polynomial failure surface[J]. Journal of Composite Materials, 1989, 23: 208-231. [32] ENGELSTAD S P, EDDY J N, NIGHT N F. Postbuckling response and failure prediction of graphite-epoxy plates loaded in compression[J]. AIAA Journal, 1992, 30(8): 2106-2113. [33] REDDY Y S N, MOORTHY C M D, REDDY J N. Non-linear progressive failure analysis of laminated composite plates[J]. International Journal of Non-Linear Mechanics, 1995, 30(5): 629-649. [34] SINGH S B, KUMAN A. Postbuckling response and strength of laminates under combined in-plane loads[J]. Composites Science and Technology, 1999, 59(5): 727-736. [35] HUYBRECHTS S, MAJI A, LAO J, et al. Validation of the quadratic composite failure criteria with out-of-plane shear terms[J]. Journal of Composite Materials, 2002, 36: 1879-1888. [36] HASHIN Z, ROTEM A. A fatigue failure criterion for fiber rein-forced materials[J]. Journal of Composite Materials, 1973, 7: 448-464. [37] HASHIN Z. Failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics, 1980, 47(2): 329-334. [38] LI J, LI Y, ZHANG K, et al. Interface damage behaviour during interference-fit bolt installation process for CFRP/Ti alloy joining structure[J]. Fatigue & Fracture of Engineering Materials & Structures, 2015, 38: 1359-1371. [39] ZOU P, LI Y, ZHANG K, et al. Influence of interference-fit percentage on stress and damage mechanism in hi-lock pin installation process of CFRP[J]. Journal of Composite Materials, 2017, 51(25): 3525-3538. [40] ZOU P, ZHANG K, LI Y, et al. Bearing strength and failure analysis on the interference-fit double shear-lap pin-loaded composite[J]. International Journal of Damage Mechanics, 2018, 27(2): 179-200. [41] CHANG F K, CHANG K Y. A progressive damage model for lami-nated composites containing stress concentrations[J]. Journal of Composite Materials, 1987, 21: 834-855. [42] CHANG K Y, LIU S, CHANG F K. Damage tolerance of laminated composites containing an open hole and subjected to tensile loadings[J]. Journal of Composite Materials, 1991, 25: 274-301. [43] CHRISTERSE R M. Stress based yield/failure criteria for fiber composites[J]. International Journal of Solids and Structures, 1997, 34(5): 529-543. [44] PUCK A, SCHURMANN H. Failure analysis of FRP laminates by means of physically based phenomenological models[J]. Composites Science and Technology, 1998, 58(7): 1045-1067. [45] PUCK A, MANNIGEL M. Physically based nonlinear stress-strain relations for the inter-fibre fracture analysis of FRP laminates[J]. Composites Science and Technology, 2007, 62(12-13): 1633-1662. [46] DAVILA C G, CAMANHO P P. Failure criteria for FRP laminates in plane stress[R]. Tech Rep NASA/TM-2003-212663. USA: National Aeronautics and Space Administration, 2003. [47] PINHO S T, DAVILA C G, CAMANHO P P, et al. Failure models and criteria for FRP under in-plane or three-dimensional stress states including shear non-linearity[R]. Tech Rep NASA/TM-2005-213530. USA: National Aeronautics and Space Administration, 2003. [48] 周银华. 非线性本构在复合材料多钉螺栓连接结构中的应用[D]. 西安: 西北工业大学, 2015. [49] 李彪. 基于失效机理的复合材料层合板强度分析方法[D]. 西安: 西北工业大学, 2015. [50] OLEMDO A, SANTIUSTE C. On the prediction of bolted single-lap composite joints[J]. Composite Structures, 2012, 94: 2110-7. [51] DANO M L, KAMAL E, GENDRON G. Analysis of bolted joints in composite laminates: Strains and bearing stiffness predictions[J]. Composite Structures, 2007, 79(4): 562-70. [52] LI H, LU Z, ZHANG Y. Probabilistic strength analysis of bolted joint in laminated composites using point estimate method[J]. Composite Structures, 2009, 88(2): 202-211. [53] TAN S C. A progressive failure model for composite laminates containing openings[J]. Journal of Composite Materials, 1991, 25: 556-77. [54] PAPANIKOS P, TSERPES K I, PANTELAKIS S. Modelling of fatigue damage progression and life of CFRP laminates[J]. Fatigue & Fracture of Engineering Materials & Structures, 2003, 26: 37-47. [55] SLEIGHT D W. Progressive failure analysis methodology for lami-nated composite structures[R]. Tech Rep NASA/TM-1999-209107. USA: National Aeronautics and Space Administration, 1999. [56] WANG L J, ZHANG L B, LIU X Y, et al. Mechanical model for predicting thrust and torque in vibration drilling fibre-reinforced composite materials[J]. International Journal of Machine & Manufacture, 2001, 41: 641-657. [57] LINDE P, PLEITNER J, BOER H D, et al. Modelling and simula-tion of fibre metal laminates[Z]. ABAQUS Users′ Conference, 2004. [58] WANG Y Q, TONG M B, ZHU S H. Three dimensional continuum damage mechanics model of progressive failure analysis in fibre-re-inforced composite laminates[C]//50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Palm Spring, California: 2009. [59] LEE J W, DANIEL I M. Progressive transverse cracking of crossply composite laminates[J]. Journal of Composite Materials, 1990, 24: 1225-1243. [60] KIN Y W, HONG C S. Progressive failure model for the analysis of laminated composites based on finite element approach[J]. Journal of Reinforced Plastics and Composites, 1992, 11(10): 1078-1092. [61] ROTEM A. Prediction of laminate failure with the ROTEM failure criterion[J]. Composites Science and Technology, 1998, 58(7): 1083-1094. [62] SUN C T, TAO J. Prediction of failure envelopes and stress/strain behaviour of composite laminates[J]. Composites Science and Technology, 1998, 58(7): 1125-1136. [63] HWANG T, HONG C, KIM C. Probabilistic deformation and strength prediction for a filament wound pressure vessel[J]. Composites Part B, 2003, 34(5): 481-497. [64] JOO S, HONG C, KIM C. Free edge effect on the post failure behavior of composite laminates under tensile loading[J]. Journal of Reinforced Plastics and Composites, 2001, 20(3): 191-221. [65] LINDE P, PLEITNER J U R, DE BOER H, et al. Modelling and simulation of fibre metal laminates[M]. Boston Massachusetts: ABAQUS Inc, 2004. [66] MATZEMILLER A, LUBLINER J, TAYLOR R L. A constitutive model for anisotropic damage in fiber composite[J]. Mechanics of Materials, 1995, 20(2): 125-152. [67] KIM E H, RIM M S, LEE I, et al. Composite damage model based on continuum damage mechanics and low velocity impact analysis of composite plates[J]. Composite Structures, 2013, 95: 123-134. [68] 吴义韬, 姚卫星, 吴富强. 基于应变能耗散的复合材料层合板面内缺口强度分析CDM模型[J]. 复合材料学报, 2013, 31(4): 1013-1021. [69] DUGDALE D S. Yielding of steel sheets containing slits[J]. Journal of the Mechanics and Physics of Solids, 1960, 8(2): 100-104. [70] EGAN B, MCCARTHY C T, MCCARTHY M A, et al. Stress anal-ysis of single-bolt, single-lap, countersunk composite joints with variable bolt-hole clearance[J]. Composite Structures, 2012, 94(3): 1038-1051. [71] ZOU P, LI Y, ZHANG K, et al. Mode Ⅰ delamination mechanism analysis on CFRP interference-fit during the installation process[J]. Materials & Design, 2017, 116: 268-77. |