[1] 刘杰, 郝巍, 孟江燕. 蜂窝夹层结构复合材料应用研究进展[J]. 宇航材料工艺, 2013(3): 30-34. [2] ALLEN H G. Analysis and design of structural sandwich panels Ⅱ properties of materials used in sandwich construction: Methods of testing[J]. Analysis & design of structural sandwich panels, 1969, 245-263. [3] GIBSON L J, ASHBY M F, SCHAJER G S, et al. The mechanics of two-dimensional cellular materials[J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1982, 382(1782): 25-42. [4] 富明慧, 尹久仁. 蜂窝芯层的等效弹性参数[J]. 力学学报, 1999(1): 113-118. [5] 陈梦成, 陈玳珩. 正六角形蜂窝芯层面内等效弹性参数研究[J]. 华东交通大学学报, 2010(5): 7-10. [6] 赵金森. 铝蜂窝夹层板的力学性能等效模型研究[D]. 南京: 南京航空航天大学, 2006. [7] KIM H S, AL-HASSANI S T S. A morphological elastic model of general hexagonal columnar structures[J]. International Journal of Mechanical Sciences, 2001, 43(4): 1027-1060. [8] MASTERS I G, EVANS K E. Models for the elastic deformation of honeycombs[J]. Composite Structures, 1996, 35(4): 403-422. [9] DENG Z B, ZHAO J S, JIANG L. Research on the equivalent mechanical parameters for the honeycomb core based on the Y element[J]. Advanced Materials Research, 2012, 594-597: 672-676. [10] SHI G, TONG P. The derivation of equivalent constitutive equations of honeycomb structures by a two scale method[J]. Computational Mechanics, 1995, 15(5): 395-407. [11] BECKER W. The in-plane stiffnesses of a honeycomb core including the thickness effect[J]. Archive of Applied Mechanics, 1998, 68(5): 334-341. [12] 王飞, 庄守兵, 虞吉林. 用均匀化理论分析蜂窝结构的等效弹性参数[J]. 力学学报, 2002(6): 914-923. [13] LI Y, ABBĒS F, HOANG M P, et al. Analytical homogenization for in-plane shear, torsion and transverse shear of honeycomb core with skin and thickness effects[J]. Composite Structures, 2016, 140: 453-462. [14] XU X F,QIAO P, DAVALOS J F. Transverse shear stiffness of composite honeycomb core with general configuration[J]. Journal of Engineering Mechanics, 2001, 127(11): 1144-1151. [15] XU X F, QIAO P. Homogenized elastic properties of honeycomb sandwich with skin effect[J]. International Journal of Solids and Structures, 2002, 39(8): 2153-2188. [16] GREDIAC M. A finite element study of the transverse shear in honeycomb cores[J]. International Journal of Solids & Structures, 1993, 30(13): 1777-1788. [17] PAN S D, WU L Z, SUN Y G. Transverse shear modulus and strength of honeycomb cores[J]. Composite Structures, 2008, 84(4): 369-374. [18] SOROHAN S, SANDU M, SANDU A, et al. Finite element models used to determine the equivalent in-plane properties of honeycombs[J]. Materials Today Proceedings, 2016, 3(4): 1161-1166. [19] JIANG D, ZHANG D, FEI Q, et al. An approach on identification of equivalent properties of honeycomb core using experimental modal data[J]. Finite Elements in Analysis & Design, 2014, 90(6): 84-92. [20] RAJKUMAR S, RAVINDRAN D, SHARMA R S, et al.Evaluation of elastic constants of A3003 honeycomb core with varying hexagonal cell geometries through finite element approach[J]. Proceedings of the Institution of Mechanical Engineers. Part C: Journal of Mechanical Engineering Science, 2014, 228(10): 1689-1700. [21] CHEN A, DAVALOS J F. A solution including skin effect for stiffness and stress field of sandwich honeycomb core[J]. International Journal of Solids and Structures, 2005, 42(9-10): 2711-2739. [22] 张卫红, 段文东, 许英杰, 等. 六边形蜂窝等效面外剪切模量预测及其尺寸效应[J]. 力学学报, 2013(2): 142-146. [23] 刘强, 黄争鸣. 考虑面层约束时蜂窝芯弹性常数的确定[J]. 力学季刊, 2009, 30(2): 229-236. [24] 郭瑜超, 王立凯, 吴存利, 等. 复杂多边形蜂窝面内等效弹性参数研究[J]. 机械强度, 2016, 38(6): 1258-1263. [25] CHEN D H, YANG L. Analysis of equivalent elastic modulus of asymmetrical honeycomb[J]. Composite Structures, 2011, 93(2): 767-773. [26] CHEN D H, MASUDA K. Equivalent elastic modulus of asymmetrical honeycomb[J]. ISRN Mechanical Engineering, 2011, 2011: 1-10. [27] MUKHOPADHYAY T, ADHIKARI S. Equivalent in-plane elastic properties of irregular honeycombs: An analytical approach[J].International Journal of Solids and Structures, 2016, 91: 169-184. [28] WANG R, WANG J. Modeling of honeycombs with laminated composite cell walls[J]. Composite Structures, 2018, 184: 191-197. [29] 梁森, 雒磊. 密排圆形胞元蜂窝面内等效弹性参数的模拟仿真[J]. 四川兵工学报, 2013, 34(12): 78-83. [30] CERNESCU A, ROMANOFF J, REMES H, et al. Equivalent mechanical properties for cylindrical cell honeycomb core structure[J]. Composite Structures, 2014, 108(feb.): 866-875. [31] 夏利娟, 金咸定, 汪庠宝. 卫星结构蜂窝夹层板的等效计算[J]. 上海交通大学学报, 2003(7): 999-1001. [32] 程改霞, 郑晓亚, 张铎, 等. 蜂窝夹层结构等效板力学特性研究[J]. 弹箭与制导学报, 2004, 24(s9): 568-570. [33] ZHENG K, LIAO W H, QIN Y T. Analysis and research of honeycomb sandwich structure for microsatellite based on equivalent theory[J]. Key Engineering Materials, 2010, 426-427: 472-476. [34] 张铁亮, 丁运亮, 金海波. 蜂窝夹层板结构等效模型比较分析[J]. 应用力学学报, 2011, 28(3): 275-282, 327. [35] YANG X J,LAN Q S, ZHONG Y N. Experiment and simulation on natural frequency of fiber-paper honeycomb sandwich structure composites[J]. Applied Mechanics & Materials, 2011, 101-102: 360-364. [36] BOUDJEMAI A, AMRI R, MANKOUR A, et al. Modal analysis and testing of hexagonal honeycomb plates used for satellite structural design[J]. Materials & Design, 2012, 35: 266-275. [37] 李贤冰, 温激鸿, 郁殿龙, 等. 蜂窝夹层板力学等效方法对比研究[J]. 玻璃钢/复合材料, 2012(1): 11-15. [38] LUO H T, WANG W, FU J, et al. Equivalent modeling method and experimental verification of honeycomb sandwich panels[C]//International Conference on Computational, Modeling, Simulation and Mathematical Statistics (CMSMS 2018). 2018. [39] CAI L, ZHANG D, ZHOU S, et al. Investigation on mechanical properties and equivalent model of aluminum honeycomb sandwich panels[J]. Journal of Materials Engineering & Performance, 2018, 27(12): 6585-6596. [40] 苏玲, 刘赛, 尹进, 等. 蜂窝夹层板强度分析模型对比研究[J]. 宇航总体技术, 2019, 3(5): 23-27. [41] LUO H, WANG W, WU T, et al. Effects of length-thickness ratio on the dynamic calculation accuracy of the honeycomb panel equivalent models[J]. IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2019, 490(5): 052034. [42] WU H C, MU B, WARNEMUENDE K. Failure analysis of FRP sandwich bus panels by finite element method[J]. Composites Part B Engineering, 2003, 34(1): 51-58. [43] TANIMOTO Y, NISHIWAKI T, SHIOMI T, et al. A numerical modeling for eigenvibration analysis of honeycomb sandwich panels[J]. Composite Interfaces, 2001, 8(6): 393-402. [44] SOLIMAN H E, MAKHECHA D P, VASUDEVA S, et al. On the static analysis of sandwich panels with square honeycomb core[C]//47thAIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. 2006. [45] LI Y, JIN Z. Free flexural vibration analysis of symmetric rectangular honeycomb panels with SCSC edge supports[J]. Composite Structures, 2008, 83(2): 154-158. [46] LIU D, JIN L, SHANG X. Comparisons of equivalent and detailed models of metallic honeycomb core structures with in-plane thermal conductivities[J]. Procedia Engineering, 2012, 31: 967-972. [47] 姜东, 江智远, 费庆国, 等. 考虑胶层的蜂窝夹层复合材料动态特性[J]. 东南大学学报: 自然科学版, 2013(5): 168-173. [48] XU Y, WANG H, SHENG X. Multilayered equivalent finite element method for embedded honeycomb plates[J]. Shock and Vibration, 2018(7): 1-11. [49] 徐洋, 王皓辉, 盛晓伟. 基于Hyperworks的六边形蜂窝板铺层等效建模方法研究[J]. 振动与冲击, 2018, 37(23): 53-59. [50] SHI S S, CHEN B Z, SUN Z. Equivalent properties of composite sandwich panels with honeycomb-grid hybrid core[J]. Journal of Sandwich Structures & Materials, 2018. |