[1]张文卿, 李肇晨, 吴天宇, 等. 环氧树脂及其复合材料交联结构和宏观性能的分子模拟研究与进展. 复合材料学报, 2019, 36(2): 269-276. [2]DONG L B, HOU F, LI Y, et al. Preparation of continuous carbon nanotube networks in carbon fiber/epoxy composite. Composites Part A: Applied Science and Manufacturing, 2014, 56: 248-255. [3]LI M, GU Y Z, LIU H, et al. Investigation the interphase formation process of carbon fiber/epoxy composites using a multiscale simulation method. Composites Science and Technology, 2013, 86: 117-121. [4]AHMADI M, MASOOMI M, SAFI S, et al. Interfacial evaluation of epoxy/carbon nanofiber nanocomposite reinforced with glycidyl methacrylate treated UHMWPE fiber. Journal of Applied Polymer Science, 2016, 133(31): 1-10. [5]ZHOU Y H, FAN M Z, CHEN L H. Interface and bonding mechanisms of plant fibre composites: An overview. Composites Part B: Engineering, 2016, 101: 31-45. [6]LEE S H, WANG S Q, PHARR G M, et al. Evaluation of interphase properties in a cellulose fiber-reinforced polypropylene composite by nanoindentation and finite element analysis. Composites Part A: Applied Science and Manufacturing, 2007, 38(6): 1517-1524. [7]WANG X Q, AWAN I S, CHEN G Y, et al. Molecular dynamics simulations of interfacial adhesion between carbon fibers and various epoxies/hardeners and its calorimetric validation. Journal of Composite Materials, 2012, 47(8): 1011-1017. [8]LI C Y, BROWNING A R, CHRISTENSEN S, et al. Atomistic simulations on multilayer graphene reinforced epoxy composites. Composites Part A: Applied Science and Manufacturing, 2012, 43(8): 1293-1300. [9]KULKARNI M, CARNAHAN D, KULKARNI K, et al. Elastic response of a carbon nanotube fiber reinforced polymeric composite: A numerical and experimental study. Composites Part B: Engineering, 2010, 41(5): 414-421. [10]WU G P, LI D H, YANG Y, et al. Carbon layer structures and thermal conductivity of graphitized carbon fibers. Journal of Materials Science, 2011, 47(6): 2882-2890. [11]ZHANG B M, YANG Z, SUN X Y, et al. A virtual experimental approach to estimate composite mechanical properties: Modeling with an explicit finite element method. Computational Materials Science, 2010, 49(3): 645-651. [12]SUBRAMANIAN N, KOO B, VENKATESAN K R, et al. Interface mechanics of carbon fibers with radially-grown carbon nanotubes. Carbon, 2018, 134: 123-133. [13]VARSHNEY V, ROY A K, BAUR J W. Modeling the role of bulk and surface characteristics of carbon fiber on thermal conductance across the carbon-fiber/matrix interface. ACS Applied Materials & Interface, 2015, 7(48): 26674-26683. [14]SHIOYA M, HAYAKAWA E, TAKAKU A. Non-hookean stress-strain response and changes in crystallite orientation of carbon fibres. Journal of Materials Science, 1996, 31(17): 4521-4532. [15]STOFFELS M T, STAIGER M P, BISHOP C M. Reduced interfacial adhesion in glass fibre-epoxy composites due to water absorption via molecular dynamics simulations. Composites Part A: Applied Science and Manufacturing, 2019, 118: 99-105. [16]FAN H B, YUEN M M. Material properties of the cross-linked epoxy resin compound predicted by molecular dynamics simulation. Polymer, 2007, 48(7): 2174-2178. [17]WU C F, XU W J. Atomistic molecular modelling of crosslinked epoxy resin. Polymer, 2006, 47(16): 6004-6009. [18]YANG S Y, QU J M. Computing thermomechanical properties of crosslinked epoxy by molecular dynamic simulations. Polymer, 2012, 53(21): 4806-4817. [19]MÄDER E, GAO S L, PLONKA R. Enhancing the properties of composites by controlling their interphase parameters. Advanced Engineering Materials, 2004, 6(3): 147-150. [20]XU P, YU Y H, GUO Z J, et al. Evaluation of composite interfacial properties based on carbon fiber surface chemistry and topography: Nanometer-scale wetting analysis using molecular dynamics simula-tion. Composites Science and Technology, 2019, 171: 252-260. [21]SHARMA S, CHANDRA R, KUMAR P, et al. Mechanical proper-ties of carbon nanofiber reinforced polymer composites-molecular dynamics approach. Jom, 2016, 68(6): 1717-1727. [22]JU S P, CHEN C C, HUANG T J, et al. Investigation of the structural and mechanical properties of polypropylene-based carbon fiber nanocomposites by experimental measurement and molecular dynamics simulation. Computational Materials Science, 2016, 115: 1-10. [23]CHINKANJANAROT S, RADUE M S, GOWTHAM S, et al. Multiscale thermal modeling of cured cycloaliphatic epoxy/carbon fiber composites. Journal of Applied Polymer Science, 2018, 135(25): 1-10. [24]CHINKANJANAROT S, TOMASI J M, KING J A, et al. Thermal conductivity of graphene nanoplatelet/cycloaliphatic epoxy composites: Multiscale modeling. Carbon, 2018, 140: 653-663. [25]LI M, GU Y Z, LI Y X, et al. Competition of diffusion and crosslink on the interphase region in carbon fiber/epoxy analyzed by multiscale simulations. Journal of Applied Polymer Science, 2014, 131(7): 1-7. [26]COX H L. The elasticity and strength of paper and other fibrous materials. British Journal of Applied Physics, 1952, 3(3): 7. [27]陈玉丽, 马勇, 潘飞, 等. 多尺度复合材料力学研究进展. 固体力学学报, 2018, 39(1): 1-67. [28]ZHAO Q, QIAN C C, HARPER L T, et al. Finite element study of the microdroplet test for interfacial shear strength: Effects of geometric parameters for a carbon fibre/epoxy system. Journal of Composite Materials, 2017, 52(16): 2163-2177. [29]SCHIFFER A, TAGARIELLI V L. Predictions of the interlaminar tensile failure of a carbon/epoxy composite laminate. Composite Structures, 2015, 133: 997-1008. [30]LIU H, LI M, LU Z Y, et al. Multiscale simulation study on the curing reaction and the network structure in a typical epoxy system. Macromolecules, 2011, 44(21): 8650-8660. [31]QI Z C, LIU Y, CHEN W L. An approach to predict the mechanical properties of CFRP based on cross-scale simulation. Composite Structures, 2019, 210: 339-347. |