[1]D'OLIVEIRA F A, MELO F C L, DEVEZAS T C. High-altitude platforms-Present situation and technology trends. Journal of Aerospace Technology and Management, 2016, 8(3): 249-262. [2]MENG J, LIU S, YAO Z, et al. Optimization design of a thermal protection structure for the solar array of stratospheric airships. Renewable energy, 2019, 133: 593-605. [3]SPILLARD C, GREMONT B, GRACE D, et al. The performance of high-altitude platform networks in rainy conditions//22nd AIAA International Communications Satellite Systems Conference & Exhibit 2004 (ICSSC). 2004: 3220. [4]李怡勇, 李智, 沈怀荣. 临近空间飞行器发展与应用分析. 装备指挥技术学院学报, 2008, 19(2): 61-65. [5]ANDROULAKAKIS S P, JUDY R. Status and plans of high altitude airship (HAATM) program//AIAA lighter-than-air systems technology (LTA) conference. 2013: 1362. [6]ZHAO S, LIU D, ZHAO D, et al. Change rules of a stratospheric airship's envelope shape during ascent process. Chinese Journal of Aeronautics, 2017, 30(2): 752-758. [7]MA Z, HOU Z, YANG X. Structural performance analysis of large-scale flexible inflatable structures for stratospheric airships. Journal of National University of Defense Technology, 2015(4): 5. [8]刘军虎, 刘振辉, 纪雪梅, 等. 平流层飞艇蒙皮材料的研究现状. 信息记录材料, 2016(2): 1-5. [9]ZHANG L, LI J, MENG J, et al. Thermal performance analysis of a high-altitude solar-powered hybrid airship. Renewable Energy, 2018, 125: 890-906. [10]杜以军, 蒋金华, 陈南梁. Vectran纤维复合材料抗破坏性能的研究. 玻璃钢/复合材料, 2014(2): 27-31. [11]万志敏, 刘宇艳, 宋杨, 等. Vectran纤维复合材料拉伸与撕裂性能研究. 航天返回与遥感, 2011, 32(4): 75-81. [12]覃俊, 王桦, 陈丽萍, 等. 芳香族聚酯液晶 Vectran 纤维的性能与应用. 纺织科技进展, 2017(12): 1-4. [13]SAW C, COLLINS G, MENCZEL J, et al. Thermally induced reorganization in LCP fibers: Molecular origin of mechanical strength. Journal of Thermal Analysis and Calorimetry, 2008, 93(1): 175-182. [14]杜以军, 蒋金华, 陈南梁. Vectran 纤维的耐酸碱性. 玻璃钢/复合材料, 2014(3): 27-31. [15]黄美荣. 液晶聚酯纤维的性能与结构. 合成纤维, 1998, 27(2): 33-36. |