[1]尚金龙, 李思海, 陈贻明. 纤维增强塑料在航空航天领域中的应用. 塑料工业, 2019, 47(1): 148-151. [2]RAJPAL D, KASSAPOGLOU C, DE BREUKER R. Aeroelastic optimization of composite wings including fatigue loading requirements. Composite Structures, 2019(227): 111-248. [3]杜善义, 关志东. 我国大型客机先进复合材料技术应对策略思考. 复合材料学报, 2008(1): 1-10. [4]陈国强, 陶友瑞, 蒋邦. 基于DIC的长玻纤棉增强MC尼龙小孔应力集中实验研究. 塑料工业, 2016, 44(6): 89-92. [5]APARNA M L, CHAITANYA G, SRINIVAS K, et al. Fatigue testing of continuous GFRP composites using digital image correlation (DIC) technique a review. Materials Today: Proceedings, 2015, 2(4-5): 3125-3131. [6]DJABALI A, TOUBAL L, ZITOUNE R, et al, Fatigue damage evolution in thick composite laminates: Combination of X-ray tomography, acoustic emission and digital image correlation. Composites Science and Technology, 2019, 183: 107815. [7]FEISSEL P, SCHNEIDER J, ABOURA Z, et al. Use of diffuse approximation on DIC for early damage detection in 3D carbon/epoxy composites. Composites Science and Technology, 2013, 88: 16-25. [8]卢博远, 赵静, 韦子辉, 等. 碳纤维编织复合材料损伤变形与破坏实验研究. 玻璃钢/复合材料, 2017(5): 22-27. [9]刘子尚, 杨喆, 魏延鹏, 等. 单向增强玻璃钢复合材料静/动态拉伸实验研究. 爆炸与冲击, 2019, 39(9): 52-62. [10]ZHANG Y D. Investigation on fatigue performance of T800 composites structural component. Composite Structures, 2018, 26-35. [11]Standard test method for tensile properties of polymer matrix composite materials: ASTM D3039/D3039M-17. West Conshohocken, PA: ASTM International, 2017. [12]ZHANG T, BAO R, LU S S, et al. Investigation of fatigue crack propagation mechanisms of branching crack in 2324-T39 aluminum alloy thin plates under cyclic loading spectrum. International Journal of Fatigue, 2016, 82: 602-615. [13]CHEN Y, JI C, ZHANG C, et al. Analysis for post-impact tensile-tensile fatigue damage of 2024-T3 sheets based on tests, digital image correlation (DIC) technique and finite element simulation. International Journal of Fatigue, 2019, 122: 125-140. [14]杜善义. 先进复合材料与航空航天. 复合材料学报, 2007, 24(1): 1-12. [15]沈观林, 胡更开. 复合材料力学. 北京: 清华大学出版社, 2006. [16]李伟占. 复合材料层合板损伤失效模拟分析. 哈尔滨: 哈尔滨工程大学, 2012. |