[1]乌云其其格, 张连鸿, 廖子龙. 硬质泡沫塑料在航空结构中的应用. 高科技纤维与应用, 2009(3):41-44. [2]曹明法, 胡培. 船用玻璃钢/复合材料夹层结构中的泡沫芯材. 江苏船舶, 2004(2): 3-6. [3]刘魁. 风电叶片玻璃钢/复合材料夹层结构的泡沫芯材. 塑料工业, 2011, 39(11): 104-106. [4]张保法, 傅祥炯, 周岳泉. 飞机疲劳载荷谱试验研究. 航空学报, 1997, 18(2): 93-96. [5]黄骏德. 波浪载荷引起船体构件疲劳的寿命估计. 船海工程, 1979(2): 61-71. [6]李德源, 叶枝全, 陈严, 等. 风力机叶片载荷谱及疲劳寿命分析. 工程力学, 2004, 21(6): 118-123. [7]KULKARNI N, MAHFUZ H, JEELANI S, et al. Fatigue crack growth and life prediction of foam core sandwich composites under flexural loading. Composite Structures, 2003, 59(4): 499-505. [8]KANNY K, MAHFUZ H, THOMAS T, et al. Fatigue of crosslinked and linear PVC foams under shear loading. Journal of Reinforced Plastics and Composites, 2004, 23(6): 601-612. [9]KANNY K, MAHFUZ H. Flexural fatigue characteristics of sandwich structures at different loading frequencies. Composite Structures, 2005, 67(4): 403-410. [10]王培涛, 郜明浩, 赵江, 等. 聚脲/聚酰胺结构比例对硬质交联PVC泡沫的影响. 塑料工业, 2015, 43(9): 44-48. [11]李春生, 吕子安, 连晨舟, 等, PVC燃烧时HCl的释放规律. 高分子学报, 2005(5): 674-677. [12]DADBIN S, CHAPLIN R P. Morphology and mechanical properties of interpenetrating polymer networks of poly (allyl diglycol carbonate) and rigid polyurethane. Journal of Applied Polymer Science, 2001, 81(14): 3361-3370. [13]ANDERSONS J, KIRPLUKS M, STIEBRA L, et al. Anisotropy of the stiffness and strength of rigid low-density closed-cell polyisocyanurate foams. Materials & Design, 2016, 92: 836-845. [14]DAWSON J R, SHORTALL J B. The microstructure of rigid polyurethane foams. Journal of Materials Science, 1982, 17(1): 220-224. [15]汪晓东, 励杭泉, 金日光, 等. 超高分子量聚乙烯/聚丙烯共混体系流变行为及形态的研究. 高分子学报, 1994(4): 486-490. [16]赵立岩, 孙玉权, 颜晨, 等. 大尺寸海上风电叶片根部灌注工艺研究. 玻璃钢/复合材料, 2015(12): 92-96. |