[1] LOBANOV M V, GULYAEV A I, BABIN A N. Improvement of the impact and crack resistance of epoxy thermosets and thermoset-based composites with the use of thermoplastics as modifiers[J]. Polymer Science, Series B, 2016, 58 (1): 1-12. [2] PARK S J, HEO G Y, JIN F L, et al. Effect of urethane functionality and number of epoxide proups on cure and mechanical behaviors of epoxy resins[J]. Macro-molecular Research, 2015, 23(2): 134-138. [3] DADFAR M R, GHADAMI F. Effect of rubber modification on fracture toughness properties of glass reinforced hot cured epoxy composites[J]. Materials & Design, 2013, 47: 16-20. [4] 常新龙, 李正亮, 胡波, 等. 碳纤维/环氧树脂层合板的激光烧蚀特性分析[J]. 红外与激光工程, 2011, 40(9): 1691-1695. [5] 王新杰, 张建强, 郭玉文. 非金属粉/环氧树脂复合材料固化动力学[J]. 西南交通大学学报, 2011, 46(3): 518-522. [6] SOBRINHO L L, CALADO V M A, BASTIAN F L. Effects of rubber addition to an epoxy resin and its fiber glass-reinforced composite[J]. Polymer Composites, 2012, 33(2): 295-305. [7] YU Y, WANG M, FOIX D, et al. Rheological study of epoxy systems blended with poly(ether sulfone) of different molecular weights[J]. Industrial & Engineering Chemistry Research, 2008, 47(23): 9361-9369. [8] KISHI H, SHI Y B, HUANG J. Shear ductility and toughen ability study of highly cross-linked epoxy polyethersul-phone[J]. Journal of Materials Science, 1997, 32(3): 761-771. [9] MIMURA K, ITO H, FUJIOKA H. Improvement of thermal and mechanical properties by control of morphologies in PES-modified epoxy resins[J]. Polymer, 2000, 41(12): 4451-4459. [10] BUEKNALL C B, PARTRIDGE I K. Phase separation in epoxy resins containing polyethersulphone[J]. Polymer, 1983, 24(5): 639-644. [11] HOURSTON D J, LANE J M. The toughening of epoxy resins with thermoplastics: 1. Trifunctional epoxy resin-polyetherimide blends[J]. Polymer, 1992, 33(7): 1379-1383. [12] WETZEL B, HAUPERT F, ZHANG M Q. Epoxy nanocomposites with high mechanical and triological performance[J]. Composites Science and Technology, 2003, 63(14): 2055-2067. [13] ANBAZHAGAN S, ALAGAR M, GNANASUNDARAM P. Synthesis and characterization of organic-inorganic hybrid clay filled and bismaleimide-siloxane modified epoxy nanocomposites[J]. International Journal of Plastics Technology, 2011, 15(1): 30-45. [14] CHANDRAMOHAN A, ALAGAR M. Synthesis and characterization of 1, 1-bis (3-methyl-4-epoxyphenyl) cyclohexane-toughened DGEBA and TGDDM organo clay hybrid nanocomposites[J]. High performance polymers, 2011, 23(3): 197-211. [15] 武渊博, 李刚, 黄智彬, 等. 端环氧基丁腈橡胶增韧环氧树脂的结构与性能[J]. 玻璃钢/复合材料, 2010(5): 44-46. [16] THOMAS R, DURIX S, SINTUREL C, et al. Cure kinetics, morphology and miscibility of modified DGEBA-based epoxy resin-effects of a liquid rubber inclusion[J]. Polymer, 2007, 48(6): 1695-1710. [17] DONGHYON K, JUNG B, YOUNGSON C, et al. Cure kinetics and mechanical properties of the blend system of epoxy/diaminodiphenyl sulfone and amine terminated polyetherimide-carboxyl terminated poly (butadiene-co-acrylonitrile) block copolymer[J]. Korean Chemical Engineer, 2005, 22(5): 755-761. [18] DISPENZA C, SPADARO G. Cure kinetics of a tetrafunctional rubber modified epoxy-amine system[J]. Journal of Thermal Analysis and Calorimetry, 2000, 61(2): 579-587. [19] 梁伟荣, 王惠民. 热致液晶聚合物增韧环氧树脂的研究[J]. 玻璃钢/复合材料, 1997(4): 3-4, 23. [20] LEE J Y, JANG J. IR study of hydrogen bonding in novel liquid crystalline epoxy/DGEBA blends[J]. Polymer Bulletin, 1997, 38(4): 439-445. [21] PUNCHAIPETCH P, AMBROGI V, GIAMBERINI M, et al. Epoxy+liquid crystalline epoxy coreacted networks: Ⅱ. Mechanical properties[J]. Polymer, 2002, 43: 839-848. [22] ZHANG B L, TANGG L, SHI K Y. et al. A study on the properties of epoxy resin toughened by a liquid crystal-type oligomer[J]. Journal of Applied Polymer Science, 1999, 71(1): 177-184. [23] ZHANG J, GUO Q, FOX B. Thermal and mechanical properties of a dendritic hydroxyl-functional hyperbranched polymer and tetrafunctional epoxy resin blends[J]. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48(4): 417-424. [24] VARLEY R J, TIAN W. Toughening of an epoxy anhydride resin system using an epoxidized hyperbranched polymer[J]. Polymer International, 2004, 53(1): 69-77. [25] 蔡昊, 汪济奎, 王耀先. 改性热塑性聚合物增韧TGDDM环氧树脂的研究[J]. 玻璃钢/复合材料, 2015(7): 5-11. [26] 葛金龙, 王传虎, 曾小剑. 环氧树脂/蒙脱土纳米复合材料的性能及增韧机理[J]. 塑料, 2010, 39(1): 101-103. [27] TANG B, LIU X B, ZHAO X L, et al. Highly efficient in situtoughening of epoxy thermosets with reactive hyperbranched polyurethane[J]. Journal of Applied Polymer Science, 2014, 131(16): 40614(1-9). [28] 张铭, 王成忠, 武德珍, 等. 互穿网络型乙烯基酯树脂/环氧树脂的增韧与热性能[J]. 高分子材料科学与工程, 2005, 21(2): 196-199. [29] 张予东, 王艳萍, 张静, 等. 改性脂肪族胺类环氧树脂固化剂:非等温固化反应[J]. 河南大学学报(自然科学版), 2016, 46(6): 702-709. [30] 郭宝春, 邱清华, 贾德民. 互穿聚合物网络(IPN)技术在功能高分子中的应用[J]. 功能材料, 2000, 31(1): 29-32. [31] 陈敏孙, 江厚满, 刘泽金. 玻璃纤维/环氧树脂复合材料热分解动力学参数的确定[J]. 强激光与粒子束, 2010, 22(9): 1969-1972. [32] D'ALMEIDA J R M, CELLA N. Analysis of the fracture behavior of epoxy resins under impact conditions[J]. Journal of Applied Polymer Science, 2000, 77(11): 2486-2492. [33] BASCOM W D, COTTINGTON R L, JONES R L, et al. The fracture of epoxy-and elastomer- modified epoxy polymers in bulk and as adhesives[J]. Journal of applied polymer science, 1975, 19(9): 2545-2562. [34] 孙以实, 杨卫. 典型热固性树脂的增韧机制和断裂模型[J]. 热固性树脂, 1990(3): 1-7. |