[1] Paley M, Aboudi J. Micromechanical analysis of composites by the generalized cells model. Mechanics of materials, 1992, 14(2): 127-139. [2] Aghdam M M, Smith D J, Pavier M J. Finite element micromechanical modelling of yield and collapse behaviour of metal matrix composites. Journal of the Mechanics and Physics of Solids, 2000, 48(3): 499-528. [3] Mori T, Tanaka K. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Actametallurgica, 1973, 21(5): 571-574. [4] Hopkins D A, Chamis C C. A unique set of micromechanics equations for high-temperature metal matrix composites//In Testing technology of metal matrix composites, ASTM International. Philadelphia: 1988: 159-176. [5] Robertson D D, Mall S. Micromechanical analysis for thermoviscoplastic behavior of unidirectional fibrous composites. Composites Science and Technology, 1994, 50(4): 483-496. [6] Huang Z M. Simulation of the mechanical properties of fibrous composites by the bridging micromechanics model. Composites Part A: applied science and manufacturing, 2001, 32(2): 143-172. [7] Hashin Z, Rotem A. A fatigue failure criterion for fiber reinforced materials. Journal of composite materials, 1973, 7(4): 448-464. [8] Hashin Z. Failure criteria for unidirectional fiber composites. Journal of applied mechanics, 1980, 47(2): 329-334. [9] Puck A, Schürmann H. Failure analysis of FRP laminates by means of physically based phenomenological models. Failure Criteria in Fibre-Reinforced-Polymer Composites, 2004, 832-876. [10] Huang C H, Lee Y J. Experiments and simulation of the static contact crush of composite laminated plates. Composite Structures, 2003, 61(3): 265-270. [11] Linde P, Pleitner J, de Boer H, et al. Modelling and simulation of fibre metal laminates//In ABAQUS Users′ conference. Boston: 2004: 421-439. [12] Hassan N M, Batra R C. Modeling damage in polymeric composites. Composites B, 2008, 39: 66-82. [13] Kachanov L M. On the time to failure under creep conditions. Izvestiia Akademii Nauk SSSR Otdelenie Teckhnicheskikh Nauk, 1958, 8: 26-31. [14] Matzenmiller A L J T R, Lubliner J, Taylor R L. A constitutive model for anisotropic damage in fiber-composites. Mechanics of materials, 1995, 20(2): 125-152. [15] Coleman B, Noll W. On the thermostatics of continuous media. Arch Ration Mech Anal, 1959(4): 97-128. [16] Maimí P, Camanho P P, Mayugo J A, et al. A continuum damage model for composite laminates: Part Ⅰ-Constitutive model. Mechanics of Materials, 2007, 39(10): 897-908. [17] Barbero E J, Cosso F A, Roman R, et al. Determination of material parameters for Abaqus progressive damage analysis of E-glass epoxy laminates. Composites Part B: Engineering, 2007, 46: 211-220. [18] Barbero E J, Cosso F A. Determination of material parameters for discrete damage mechanics analysis of carbon-epoxy laminates. Composites Part B: Engineering, 2014, 56: 638-646. [19] Shokrieh M M, Lessard L B. Progressive fatigue damage modeling of composite materials, Part Ⅰ: Modeling. Journal of composite materials, 2000, 34(13): 1056-1080. [20] Camanho P P, Matthews F L. A progressive damage model for mechanically fastened joints in composite laminates. Journal of composite materials, 1999, 33(24): 2248-2280. [21] Zhang J, Liu F, Zhao L, et al. A progressive damage analysis based characteristic length method for multi-bolt composite joints. Composite Structures, 2014, 108: 915-923. [22] McCarthy C T, McCarthy M A, Lawlor V P. Progressive damage analysis of multi-bolt composite joints with variable bolt-hole clearances. Composites Part B: Engineering, 2005, 36(4): 290-305. [23] Zhang J, Zhou L, Chen Y, et al. A micromechanics-based degradation model for composite progressive damage analysis. Journal of Composite Materials, 2016, 50(16): 2271-2287. [24] Batra R C, Gopinath G, Zheng J Q. Material parameters for pressure-dependent yielding of unidirectional fiber-reinforced polymeric composites. Composites Part B: Engineering, 2012, 43(6): 2594-2604. [25] Nerilli F, Vairo G. Progressive damage in composite bolted joints via a computational micromechanical approach. Composites Part B: Engineering, 2017, 111: 357-371. [26] Huang Z M. A bridging model prediction of the ultimate strength of composite laminates subjected to biaxial loads. Composites Science and Technology, 2004, 64(3-4): 395-448. [27] Huang ZM, Xin L M. In situ strengths of matrix in a composite. ActaMechanicaSinica, 2017, 33(1): 120-131. [28] Wang Y C, Huang Z M. Analytical micromechanics models for elastoplastic behavior of long fibrous composites: A critical review and comparative study. Materials, 2018, 11(10): 1919. [29] Soden P D, Hinton M J, Kaddour A S. Lamina properties, lay-up configurations and loading conditions for a range of fibre reinforced composite laminates//Failure Criteria in Fibre-Reinforced-Polymer Composites, The World-Wide Failure Exercise. 2004: 30-51. [30] Zhao Y Q, Zhou Y, Huang Z M, et al. Experimental and micromechanical investigation of T300/7901 unidirectional composite strength. Polymer Composites, 2019, 40(7): 2639-2652. [31] Huang Z M. A unified micromechanical model for the mechanical properties of two constituent composite materials. Part Ⅲ: Strength behavior. Journal of Thermoplastic Composite Materials, 2001, 14(1): 54-69. [32] Zhao Y Q, Jiang F, Huang Z M, et al. Micromechanical progressive damage analysis of inter- and intra-layer failures in fiber-reinforced composite laminates. Journal of Composite Materials (Accepted). [33] Lorriot T, Marion G, Harry R, et al. Onset of free-edge delamination in composite laminates under tensile loading. Composites Part B: Engineering, 2003, 34(5): 459-471. [34] Wang H X, Duan Y G, Abulizi D, et al. Design optimization of CFRP stacking sequence using a multi-island genetic algorithms under low-velocity impact loads. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2017, 32(3): 720-725. |