[1] 赵继成. 材料基因组计划中的高通量实验方法. 科学通报, 2013, 58(35): 3647-3655. [2] 王海舟, 汪洪, 丁洪, 等. 材料的高通量制备与表征技术. 科技导报, 2015, 33(10): 31-49. [3] 向勇, 闫宗楷, 朱焱麟, 等. 材料基因组技术前沿进展. 电子科技大学学报, 2016, 45(4): 634-649. [4] Chang H, Gao C, Takeuchi Y, et al. Combinatorial synthesis and high throughput evaluation of ferroelectric/dielectric thin-film libraries for microwave applications. Applied Physics Letters, 1998, 72(17): 2185-2187. [5] 项晓东, 汪洪, 向勇, 等. 组合材料芯片技术在新材料研发中的应用案例. 科技导报, 2015, 33(10): 64-78. [6] Yoo Y, Xue Q, Chu Y S, et al. Identification of amorphous phases in the Fe- Ni- Co ternary alloy system using continuous phase diagram materials chips.Intermetallics, 2006, 14(3): 241-247. [7] 柳延辉. 非晶合金的高通量制备与表征. 物理学报, 2017, 66(17): 6106. [8] Wang J, Yoo Y, Gao C, et al. Identification of a blue photoluminescent composite materials from a combinatorial library. Science, 1998, 279(5357): 1712-1714. [9] Chen L, Bao J, Gao C, et al. Combinatorial synthesis of insoluble oxide library from ultrafine/nano particle suspension using a drop-on-demand inkjet delivery system. Journal of Combinatorial Chemistry, 2004, 6(5): 699-702. [10] Takeuchi I, Chang K, Sharma R P, et al. Microstructural properties of (Ba,Sr)TiO3 films fabricated from BaF2/SrF2/TiO2 amorphous multilayers using the combinatorial precursor method. Journal of Applied Physics, 2001, 90(5): 2474-2478. [11] Liu X, Shen Y, Yang R, et al. Inkjet printing assisted synthesis of multicomponent mesoporous metal oxides for ultrafast catalyst exploration. Nano Letters, 2012, 12(11): 5733-5739. [12] 王薪, 朱礼龙, 方姣, 等. 基于“材料基因组工程”的3种方法在镍基高温合金中的应用. 科技导报, 2015, 33(10): 79-86. [13] Zhao J C, Jackson M R, Peluso L A, et al. A diffusion multiple approach for the accelerated design of structural materials. MRS bulletin, 2002, 27(4): 324-329. [14] Zhao J C, Jackson M R, Peluso L A, et al. Overview: a diffusion-multiple approach for mapping phase diagrams, hardness, and elastic modulus. JOM, 2002, 54(7): 42-45. [15] 李静媛, 张源, 李建兴, 等. 一种高通量制备多组分梯度金属材料的装置: 201610267117.5. 2018-08-03. [16] Schwendner K I, Banerjee R, Collins P C, et al. Direct laser depo-sition of alloys from elemental powder blends. Scripta Materialia, 2001, 45(10): 1123-1129. [17] Arnold C B, Serra P, Pique A. Laser direct-write techniques for printing of complex materials. MRS Bulletin, 2007, 32(1): 23-31. [18] Springer H, Raabe D. Rapid alloy prototyping: compositional and thermos-mechanical high through put bulk combinatorial design of structural materials based on the example of 30Mn-1.2C-xAl triplex steels. Acta Meterialia, 2012, 60: 4950-4959. [19] Mccluskey P J, Zhao C, Kfir O, et al. Precipitation and thermal fatigue in Ni- Ti- Zr shape memory ally thin films by combinatorial nanocalorimetry. Acta Materialia, 2011, 59(13): 5116-5124. [20] Kim H J, Han J H, Kaiser R, et al. High-throughput analysis of thin film stresses using arrays of micromachined cantilever beams. Review of Scientific Instruments, 2008, 79(4): 5112. [21] Gregoire J M, Mccluskey P J, Dale D, et al. Combining combinatorial nanocalorimetry and X-ray diffraction techniques to study the effects of composition and quench rate on Au-Cu-Si metallic glasses. Scripta Materialia, 2012, 66(3/4): 178-181. |