[1] Gunes R, Arslan K. Development of numerical realistic model for predicting low-velocity impact response of aluminium honeycomb sandwich structures[J]. Journal of Sandwich Structures & Materials, 2015, 97(7): 529-538. [2] Manes A, Gilioli A, Sbarufatti C, et al. Experimental and numerical investigations of low velocity impact on sandwich panels[J]. Composite Structures, 2013, 99: 8-18. [3] Shen Y O, Yang F J, Cantwell W J, et al. Geometrical effects in the impact response of the aluminium honeycomb sandwich structures[J]. Journal of Reinforced Plastics and Composites, 2014, 33(12): 1148-1157. [4] Foo C C, Seah L K, Chai G B. Low-velocity impact failure of aluminium honeycomb sandwich panels[J]. Composite Structures, 2008, 85(1): 20-28. [5] Birman V, Kardomateas G A. Review of current trends in research and applications of sandwich structures[J]. Composites Part B: Engineering, 2018, 142: 221-240. [6] 齐佳旗, 段玥晨, 李成, 等. 低速冲击下铝蜂窝夹层板的动态响应研究[J]. 玻璃钢/复合材料, 2019(5): 5-11. [7] 陈尚军, 秦庆华, 张威, 等. 低速冲击下金属蜂窝夹芯板抗侵彻性能的试验研究[J]. 航空学报, 2018, 39(2): 162-168. [8] 刘强, 何兆亨, 陈航. EPP泡沫填充对铝蜂窝动态冲击性能的影响研究[J]. 玻璃钢/复合材料, 2018(4): 45-50. [9] 王洪欣, 查晓雄, 余敏, 等. 低速冲击下金属面夹芯板性能分析[J]. 振动与冲击, 2014, 33(10): 81-86. [10] 陈博, 张彦飞, 王智, 等. PVC泡沫夹芯板低速冲击响应数值模拟[J]. 玻璃钢/复合材料, 2016(2): 29-34. [11] Jeon K W, Shin K B. An experimental investigation on low-velocity impact responses of sandwich panels with the changes of impact location and the wall partition angle of honeycomb core[J]. International Journal of Precision Engineering and Manufacturing, 2012, 13(10): 1789-1796. [12] Zhang D, Fei Q, Zhang P. Drop-weight impact behavior of honeycomb sandwich panels under a spherical impactor[J]. Composite Structures, 2017, 168: 633-645. [13] Liu P F, Li X K, Li Z B. Finite element analysis of dynamic mechanical responses of aluminum honeycomb sandwich structures under low-velocity impact[J]. Journal of Failure Analysis and Prevention, 2017, 17(6): 1202-1207. [14] Xie Z, Zhao W, Wang X, et al. Low-velocity impact behaviour of titanium honeycomb sandwich structures[J]. Journal of Sandwich Structures & Materials, 2018, 20(8): 1009-1027. [15] Chen Y, Fu K, Hou S, et al. Multi-objective optimization for designing a composite sandwich structure under normal and 45° impact loadings[J]. Composites Part B: Engineering, 2018, 142: 159-170. [16] Iváñez I, Moure M M, Garcia-Castillo S K, et al. The oblique impact response of composite sandwich plates[J]. Composite structures, 2015, 133: 1127-1136. |