[1] Natali M, Kenny J M, Torre L. Science and technology of polymeric ablative materials for thermal protection systems and propulsion devices: A review[J]. Progress in Materials Science, 2016, 84(12): 192-275. [2] Natali M, Monti M, Kenny J, et al. Synthesis and thermal characterization of phenolic resin/silica nanocomposites prepared with high shear rate-mixing technique[J]. Journal of Applied Polymer Science, 2015, 120(5): 2632-2640. [3] Sanoj P, Kandasubramanian B. Hybrid carbon-carbon ablative composites for thermal protection in aerospace[J]. Journal of Composites, 2014, 2014(3): 1-15. [4] Srikanth I, Daniel A, Kumar S, et al. Nano silica modified carbon-phenolic composites for enhanced ablation resistance[J]. Scripta Materialia, 2010, 63(2): 200-203. [5] Mirzapour A, Asadollahi M H, et al. Effect of nanosilica on the microstructure, thermal properties and bending strength of nanosilica modified carbon fiber/phenolic nanocomposite[J]. Composites Part A, 2014, 63(18): 159-167. [6] Li S, Han Y, Chen F, et al. The effect of structure on thermal stability and anti-oxidation mechanism of silicone modified phenolic resin[J]. Polymer Degradation and Stability, 2016, 124(2): 68-76. [7] Ding J, Yang T, Huang Z, et al. Thermal stability and ablation resistance, and ablation mechanism of carbon-phenolic composites with different zirconium silicide particle loadings[J]. Composites Part B: Engineering, 2018, 154B(12): 313-320. [8] Shenogina N, Shenogin S, Xue L, et al. On the lack of thermal percolation in carbon nanotube composites[J]. Applied Physics Letters, 2005, 87(13): Z3-28. [9] Saeed S, Hakeem S, Faheem M, et al. Effect of doping of multi-walled carbon nanotubes on phenolic based carbon fiber reinforced nanocomposites[C], 2013: 012-017. [10] Mouritz A P, Gibson A G. Fire Properties of Polymer Composite Materials[J]. Solid Mechanics & Its Applications, 2006, 143. [11] Natali M, Monti M, Puglia D, et al. Ablative properties of carbon black and MWNT/phenolic composites: A comparative study[J]. Composites Part A, 2012, 43(1): 174-182. [12] Feng L, Nan L I, Xuan-Ke L I, et al. Effect of the addition of carbon black and carbon nanotubes on the structure and oxidation resistance of pyrolysed phenolic carbons[J]. New Carbon Materials, 2013, 51(4): 436-436. [13] Lanticse-Diaz L J, Tanabe Y, Enami T, et al. The effect of nanotube alignment on stress graphitization of carbon/carbon nanotube composites[J]. Carbon, 2009, 47(4): 974-980. [14] Tzeng S S, Lin Y H. Formation of graphitic rods in carbon/carbon composites reinforced with carbon nanotubes[J]. Carbon, 2013, 52(2): 617-620. [15] Amirsardari Z, Aghdam R M, Salavati-Niasari M, et al. Enhanced thermal resistance of GO/C/phenolic nanocomposite by introducing ZrB2 nanoparticles[J]. Composites Part B Engineering, 2015, 76(21): 174-179. [16] Ding J, Huang Z, Qin Y, et al. Improved ablation resistance of carbon-phenolic composites by introducing zirconium silicide particles[J]. Composites Part B, 2015, 82: 100-107. [17] Yum S H, Kim S H, Lee W I, et al. Improvement of ablation resistance of phenolic composites reinforced with low concentrations of carbon nanotubes[J]. Composites Science and Technology, 2015, 121(12): 16-24. [18] Wang Z J, Kwon D J, Gu G Y, et al. Ablative and mechanical evaluation of CNT/phenolic composites by thermal and microstructural analyses[J]. Composites Part B: Engineering, 2014, 60(4): 597-602. [19] Tate J S, Gaikwad S, Theodoropoulou N, et al. Carbon/phenolic nanocomposites as advanced thermal protection material in aerospace applications[J]. Journal of Composites, 2013, 2013: 1-9. [20] Koo J, Stretz H, Weispfenning J, et al. Nanocomposite rocket ablative materials: processing, microstructure, and performance[C]//45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference. 2004. [21] Koo J H, Pilato L A, Wissler G E. Polymer nanostructured materials for propulsion systems[J]. Journal of Spacecraft & Rockets, 2007, 44(6): 1250-1262. [22] Amirsardari Z, Aghdam R M, Salavati-Niasari M, et al. Enhanced thermal resistance of GO/C/phenolic nanocomposite by introducing ZrB2 nanoparticles[J]. Composites, 2015, 76B(7): 174-179 . [23] Sabagh S, Aref Azar A, Bahramian A R. High temperature ablation and thermo-physical properties improvement of carbon fiber reinforced composite using graphene oxide nanopowder[J]. Composites Part A: Applied Science and Manufacturing, 2017, 101: 326-333. [24] Gao J, Liu Y, Yang L. Thermal stability of boron-containing phenol formaldehyde resin[J]. Polymer Degradation & Stability, 1999, 63(1): 19-22. [25] Wang J, Guo Q, Liu L, et al. The preparation and performance of high-temperature adhesives for graphite bonding[J]. International Journal of Adhesion & Adhesives, 2005, 25(6): 495-501. [26] Wang J, Jiang N, Jiang H. Effect of the evolution of phenol-formaldehyde resin on the high-temperature bonding[J]. International Journal of Adhesion and Adhesives, 2009, 29(7): 718-723. [27] Rallini M, Natali M, Kenny J M, et al. Effect of boron carbide nanoparticles on the fire reaction and fire resistance of carbon fiber/epoxy composites[J]. Polymer, 2013, 54(19): 5154-5165. [28] Rallini M, Torre L, Kenny J M, et al. Effect of boron carbide nanoparticles on the thermal stability of carbon/phenolic composites[J]. Polymer Composites, 2017, 38(9): 1819-1827. [29] Chen Y, Chen P, Hong C, et al. Improved ablation resistance of carbon-phenolic composites by introducing zirconium diboride parti-cles[J]. Composites Part B: Engineering, 2013, 47(4): 320-325. [30] Srikanth I, Padmavathi N, Kumar S, et al. Mechanical, thermal and ablative properties of zirconia, CNT modified carbon/phenolic composites[J]. Composites Science and Technology, 2013, 80: 1-7. [31] Ding J, Sun J, Huang Z, et al. Improved high-temperature mechanical property of carbon-phenolic composites by introducing titanium diboride particles[J]. Composites Part B: Engineering, 2019, 80(1): 289-294. [32] Badhe Y, K B. Novel hybrid ablative composites of resorcinol formaldehyde as thermal protection systems for re-entry vehicles[J]. RSC Advances, 2014, 4(55): 28956. [33] Gyan D S, Balasubramanian K. Ionic liquid microseeded WC/RF ablative composite for heat shielding[J]. Rsc Advances, 2016, 6(69): 65152-65161. [34] Robert T M, Chandran M S, Jishnu S, et al. Nanoclay modified sil-ica phenolic composites: Mechanical properties and thermal response under simulated atmospheric re-entry conditions[J]. Polymers for Advanced Technologies, 2015, 26(1): 104-109. [35] Zhao Z, Gou J, Bietto S, et al. Fire retardancy of clay/carbon nanofiber hybrid sheet in fiber reinforced polymer composites[J]. Composites Science and Technology, 2009, 69(13): 2081-2087. [36] Ayandele E, Sarkar B, Alexandridis P. Polyhedral oligomeric silsesquioxane (POSS)-containing polymer nanocomposites[J]. Nanomaterials, 2012, 2(4): 445-475. [37] Gupta R, Kandasubramanian B. Hybrid caged nanostructure ablative composites of octaphenyl-POSS/RF as heat shields[J]. Rsc Advances, 2015, 5(12): 8757-8769. |