[1] 郭晓琴, 余小霞, 王永凯, 等. 石墨烯纳米片/环氧树脂复合材料的制备与介电性能研究[J]. 功能材料, 2013, 44(18): 2672-2675. [2] LU X, QU H, SKOROBOGATIY M. Piezoelectric micro- and nanostructured fibers fabricated from thermoplastic nanocomposites using a fiber drawing technique: Comparative study and potential applications[J]. ACS Nano, 2017, 11: 2103-2114. [3] HAMIDREZA H, ALI A. Structural health monitoring of rotary aerospace structures based on electromechanical impedance of integrated piezoelectric transducers[J]. Journal of Intelligent Material Systems and Structures, 2018, 29(9): 1799-1817. [4] 胡自力, 熊克, 杨红, 等. 基于智能材料结构的几种损伤评价方法[J]. 航空学报, 2002, 23(1): 1-5. [5] POWELL G R, CROSBY P A, WATERS D N, et al. In-situ cure monitoring using optical fiber sensors-a comparative study[J]. Smart Materials and Structures, 1998, 7(4): 557-568. [6] PHAM G T, PARK Y B, LIANG Z Y, et al. Processing and modeling of conductive thermoplastic/carbon nanotube films for strain sensing[J]. Composites Part B, 2008, 39: 209-216. [7] YU S L, WANG X P, XIANG H X, et al. Superior piezoresistive strain sensing behaviors of carbon nanotubes in one-dimensional polymer fiber structure[J]. Carbon, 2018, 140: 1-9. [8] HAO B, MA Q, YANG S D, et al. Comparative study on monitoring structural damage in fiber-reinforced polymers using glass fibers with carbon nanotubes and graphene coating[J]. Composites Science and Technology, 2016, 129: 38-45. [9] BALAJI R, SASIKUMAR M. Graphene based strain and damage prediction system for polymer composites[J]. Composites Part A: Applied Science and Manufacturing, 2017, 103: 48-59. [10] YANG X D, SUN L Y, HUANG B C, et al. Tuning the properties of functional adhesives with hybrid nanofillers for structural health monitoring[J]. The Journal of Adhesion, 2019: 1-12. [11] KWON D J, SHIN P S, KIM J H, et al. Detection of damage in cylindrical parts of carbon fiber/epoxy composites using electrical resistance (ER) measurements[J]. Composites Part B, 2016, 99: 528-532. [12] GADOMSKI J, PYRZANOWSKI P. Experimental investigation of fatigue destruction of CFRP using the electrical resistance change method[J]. Measurement, 2016, 87: 236-245. [13] NATALIYA K, ERIC F, JAN S T, et al. Monitoring self-sensing damage of multiple carbon fiber composites using piezoresistivity[J]. Synthetic Metals, 2017, 224: 56-62. [14] 谢小林, 廖嘉, 范红青, 等. 超声F扫描监测碳/环氧复合材料层合板冲击损伤—电阻变化[J]. 航空材料学报, 2009, 29(3): 107-110. [15] ROH H D, LEE S Y, JO E, et al.Deformation and interlaminar crack propagation sensing in carbon fiber composites using electrical resistance measurement[J]. Composite Structures, 2019, 216: 142-150. [16] JOO S J, YU M H, KIM W S, et al. Damage detection and self-healing of carbon fiber polypropylene (CFPP)/carbon nanotube (CNT) nano-composite via addressable conducting network[J]. Composites Science and Technology, 2018, 167: 62-70. [17] ZHANG M F, BAREILLE O, SALVIA M. Cure and damage monitoring of flax fiber-reinforced epoxy composite repairs for civil engineering structures using embedded piezo micro-patches[J]. Construction and Building Materials, 2019, 225: 196-203. [18] NA W S. History data free piezoelectric based non-destructive testing technique for debonding detection of composite structures[J]. Composite Structures, 2019, 226: 1-8. [19] NA W S, BAEK J. Piezoelectric impedance-based non-destructive testing method for possible identification of composite debonding depth[J]. Micromachines, 2019, 10: 1-10. [20] MONTOYA J A, CASTRILLON A C, PÉREZ J S. In-flight and wireless damage detection in a UAV composite wing using fiber optic sensors and strain field pattern recognition[J]. Mechanical Systems and Signal Processing, 2020, 136: 1-26. [21] ZHANG X Q, CHEN R S, WANG A T, et al. Monitoring the fail-ure forms of a composite laminate system by using panda polarization maintaining fiber Bragg gratings[J]. Optics Express, 2019, 13(27): 17571-17580. [22] LOUTAS T H, CHARLAFTIS P, AIROLDI A, et al. Reliability of strain monitoring of composite structures via the use of optical fiber ribbon tapes for structural health monitoring purposes[J]. Composite Structures, 2015, 134: 762-771. [23] 张春峰, 文晓艳, 张东生, 等. 基于光纤布拉格光栅的复合材料振动性能研究与损伤监测[J]. 玻璃钢/复合材料, 2017(8): 15-19. [24] GOOSSENS S, PAUW B D, GEERNAERT T, et al. Aerospace-grade surface mounted optical fibre strain sensor for structural health monitoring on composite structures evaluated against in-flight conditions[J]. Smart Materials and Structures, 2019, 28: 1-13. [25] SHAN Y N, XU H, ZHOU Z H, et al. State sensing of composite structures with complex curved surface based on distributed optical fiber sensor[J]. Journal of Intelligent Material Systems and Structures, 2019, 30(13): 1951-1968. [26] ZHANG L Q, DING S Q, DONG S F, et al. Piezoresistivity, mecha-nisms and model of cement-based materials with CNT/NCB composite fillers[J]. Materials Research Express, 2017(4): 1-16. [27] MUFADI F A, SHERIF H A. Effect of multiwalled carbon nanotubes on sensing crack initiation and ultimate strength of cement nanocomposites[J]. Research Article-Mechanical Engineering, 2019, 44: 1403-1413. [28] LUO J L, ZHANG C W, DUAN Z D, et al. Influences of multi-walled carbon nanotube (MCNT) fraction, moisture, stress/strain level on the electrical properties of MCNT cement-based composites[J]. Sensors and Actuatora A: Physical, 2018, 280: 413-421. [29] CHUNG D D L. Self-monitoring structural materials[J]. Materials Science and Engineering, 1997, 22: 57-78. [30] CHEN P W, CHUNG D D L. Carbon fiber reinforced concrete for smart structures capable of non-destructive flaw detection[J]. Smart Materials and Structures, 1993(2): 22-30. [31] 陈兵, 吴科如, 姚武, 等. 损伤自诊断机敏水泥材料研究[J]. 水泥, 2002(8): 3-11. [32] SEGURA I, FANECA G, TORRENTS J M, et al. Self-sensing concrete made from recycled carbon fibres[J]. Smart Materials and Structures, 2019, 28: 1-11. [33] ZHANG J R, LU Y Y, LU Z Y, et al. A new smart traffic monitoring method using embedded cement-based piezoelectric sensors[J]. Smart Materials and Structures, 2015, 24: 1-8. [34] DONG B Q, LIU Y Q, QIN L, et al. In-situ structural health monitoring of a reinforced concrete frame embedded with cement-based piezoelectric smart composites[J]. Research in Nondestructive Evaluation, 2016, 4(27): 216-229. [35] DONG B Q, LIU Y Q, QIN L, et al. In situ stress monitoring of the concrete beam under static loading with cement-based piezoelectric sensors[J]. Nondestructive Testing and Evaluation, 2015, 4(30): 312-326. [36] SU H Z, ZHANG N, LI H. Concrete piezoceramic smart module pairs-based damage diagnosis of hydraulic structure[J]. Composite Structures, 2018, 183: 582-593. [37] 梁大开, 杨红. 采用空心光纤自诊断、自修复智能结构的研究[J]. 压电与声光, 2002, 24(4): 261-263. [38] SONG X G, ZHANG Y X, LIANG D K. Load identification for a cantilever beam based on fiber Bragg grating sensors[J]. Sensors, 2017, 17: 1-21. [39] CHEN Z Y, ZHENG D J, SHEN J X, et al. Research on distributed optical-fiber monitoring of biaxial-bending structural deformations[J]. Measurement, 2019, 140: 462-471. [40] RODRIGUEZ G, CASAS J R, VILLALBA S. Shear crack width assessment in concrete structures by 2D distributed optical fiber[J]. Engineering Structures, 2019, 195: 508-523. [41] RODRIGUEZ G, CASAS J R, VILLALBA S. Shear crack pattern identification in concrete elements via distributed optical fibre grid[J]. Structure and Infrastructure Engineering, 2019, 15(12): 1630-1648. |