复合材料科学与工程 ›› 2021, Vol. 0 ›› Issue (1): 19-27.

• 基础研究 • 上一篇    下一篇

不同纱线张力下的三维正交织物微观几何结构建模

刘岳岩1, 马莹1,2,3*, 禄盛1,2, 邓聪颖1, 陈翔1, 赵洋1   

  1. 1.重庆邮电大学 先进制造工程学院,重庆400065;
    2.西安交通大学 机械结构强度与振动国家重点实验室,西安710049;
    3.堪萨斯州立大学 复合材料实验室,曼哈顿堪萨斯66506
  • 收稿日期:2020-03-20 出版日期:2021-01-28 发布日期:2021-01-25
  • 通讯作者: 马莹(1985-),女,讲师,硕士生导师,主要从事复合材料力学性能分析方面的研究,maying@cqupt.edu.cn。
  • 作者简介:刘岳岩(1995-),男,硕士研究生,主要研究方向为三维机织物建模及力学性能分析。
  • 基金资助:
    重庆市教委科学技术研究计划项目(KJQN201900632);重庆市留学人员回国创业创新项目(cx2018126)

MICRO-GEOMETRY OF 3D ORTHOGONAL WOVEN FABRIC MODELING UNDER DIFFERENT YARN TENSION

LIU Yue-yan1, MA Ying1,2,3*, LU Sheng1,2, DENG Cong-ying1, CHEN Xiang1, ZHAO Yang1   

  1. 1. College of Advanced Manufacturing Engineering, Chongqing University of Posts andTelecommunications, Chongqing 400065, China;
    2. State Key Laboratory for Strength and Vibration of Mechanical Structures,Xi′an Jiaotong University, Xi′an 710049, China;
    3. Kansas State University Composites Laboratory, Kansas State University, Manhattan, KS 66506, USA
  • Received:2020-03-20 Online:2021-01-28 Published:2021-01-25

摘要: 从织物组织入手,建立纱线截面形状为圆形的三维正交织物拓扑结构。在此基础上,采用数字单元法理论在纱线首尾两端施加周期性边界和恒定张力,并通过纱线纤维化离散方法,将纱线分为既定数量的数字纤维,进而改变其截面形状和空间构型,实现织物织造成型过程的动态仿真。研究结果表明,施加较大的经纬纱张力及较小的接结纱张力,所得数值模型的经纱与纬纱厚度均匀且能保持伸直状态,接结纱截面变化情况与真实正交织物相符。当经纬纱线张力为0.2 N、接结纱张力为0.01 N时,织物数值模型厚度与实验值仅差9.55%,其微观几何结构与织物样本显微图像吻合度较高,验证了数字单元法理论在织物亚纱线尺度建模的有效性。

关键词: 三维正交织物, 亚纱线尺度, 纱线张力, 数字单元法, 周期性边界条件, 复合材料

Abstract: The unit cell topology of the 3d orthogonal weave fabric is established with circular initial yarn cross-section shape based on the weaving pattern. Then, periodic boundary and constant tension are applied at yarn ends using the Digital Element Approach (DEA). Each yarn is discretized into a predetermined number of digital fibers. As a result, the yarn cross-section shape and its spatial configuration is changed through the dynamic weaving process simulation. The results show that due to a relatively large warp and weft tension in comparison to a small weaver tension, the thickness of the warp and weft yarns of the numerical model is uniform and the geometry of which remains to be straightness. The cross-section shape of the weaver is consistent with that of the microscopic image. When the applied tension of warp, weft, and weaver yarns is 0.2 N, 0.2 N, and 0.01 N respectively, the thickness of the numerical model is only 9.55% less than that of the experimental one. The micro-geometry of the numerical model matches perfectly with the microscopic images. The simulation results validated the DEA in determining the micro-geometry of 3d woven fabric at sub-yarn scale.

Key words: 3D orthogonal woven fabric, sub-yarn scale modeling, yarn tension, digital element approach, periodic boundary conditions, composites

中图分类号: