[1] WENDLING A, DANIAL J L, HIVET G, et al. Meshing preprocessor for the mesoscopic 3D finite element simulation of 2D and interlock fabric deformation[J]. Applied Composite Materials, 2015, 22(6): 869-886. [2] WENDLING A, HIVET G, VIDAL-SALLÉ E, et al. Consistent geometrical modelling of interlock fabrics[J]. Finite Elements in Analysis & Design, 2014, 90(2): 93-105. [3] SOHAIL A, ZHENG X T, ZAKIR S M, et al. Numerical modeling of 3D woven hybrid composites for stiffness and strength prediction[J]. Procedia Structural Integrity, 2018, 13: 1014-1019. [4] STIG F, HALLSTRÕM S. Spatial modelling of 3D-woven textiles[J]. Composite Structures, 2012, 94: 1495-1502. [5] 王旭, 储长流, 倪庆清, 等. 运用MAXScript语言的单层机织物结构三维建模[J]. 纺织学报, 2019, 40(1): 159-165. [6] LIU Y, SI X N, LIU P, et al. Mesoscopic modeling and simulation of 3D orthogonal woven composites using material point method[J]. Composite Structures, 2018, 203: 435-435. [7] VERPOEST I, LOMOV S V. Virtual textile composites software WiseTex: integration with micro-mechanical, permeability and structural analysis[J]. Composites Science and Technology, 2005, 65(15/16): 2563-2574. [8] LOMOV S V, VERPOEST I, CICHOSZ J, et al. Meso-level textile composites simulations: Open data exchange and scripting[J]. Journal of Composite Materials, 2014, 48(5): 621-637. [9] LOMOV S V. Composite reinforcements for optimum performance[M]. Britain: Woodhead publishing limited, 2011: 200-238. [10] ROBITAILLE F, CLAYTON B R, LONG A C, et al. Geometric modelling of industrial preforms: Warp-knitted textiles[J]. Proceedings of the Institution of Mechanical Engineers Part L: Journal of Materials Design and Applications, 2000, 214(2): 71-90. [11] ROBITAILLE F, LONG A C, JONES I A, et al. Automatically generated geometric descriptions of textile and composite unit cells[J]. Composites Part A Applied Science & Manufacturing, 2003, 34(4): 303-312. [12] LIN H, BRIWN L P, LONG A C. Modelling and simulating textile structures using TexGen[J]. Advanced Materials Research, 2011, 331: 44-47. [13] WANG Y Q, SUN X K. Digital-element simulation of textile processes[J]. Composites Science & Technology, 2001, 61(2): 311-319. [14] ZHOU G M, SUN X K, WANG Y Q. Multi-chain digital element analysis in textile mechanics[J]. Composites Science and Technology, 2004, 64(2): 239-244. [15] MIAO Y Y, ZHOU E, WANG Y Q, et al. Mechanics of textile composites: Micro-geometry[J]. Composites Science and Technology, 2008, 68(7-8): 1671-1678. [16] HUANG L J, WANG Y Q, MIAO Y Y, et al. Dynamic relaxation approach with periodic boundary conditions in determining the 3-D woven textile micro-geometry[J]. Composite Structures, 2013, 106(12): 417-425. [17] GREEN S D, LONG A C, EL SAID B, et al. Numerical modelling of 3D woven preform deformations[J]. Composite Structures, 2014, 108: 747-756. [18] GREEN S D, MATVEEV M Y, LONG A C, et al. Mechanical modelling of 3D woven composites considering realistic unit cell geometry[J]. Composite Structures, 2014, 118: 284-293. [19] ISART N, EI SAID B, IVANOV D S, et al. Internal geometric modelling of 3D woven composites: A comparison between different approaches[J]. Composite Structures, 2015, 132: 1219-1230. [20] WANG Y Q, MIAO Y Y, HUANG L J, et al. Effect of the inter-fiber friction on fiber damage propagation and ballistic limit of 2-D woven fabrics under a fully confined boundary condition[J]. International Journal of Impact Engineering, 2016, 97: 66-78. [21] DAELEMANS L, FAES J, ALLAOUI S, et al. Finite element simulation of the woven geometry and mechanical behaviour of a 3D woven dry fabric under tensile and shear loading using the digital element method[J]. Composites Science and Technology, 2016, 137: 177-187. [22] JOGLEKAR S, PANKOW M. Modeling of 3D woven composites using the digital element approach for accurate prediction of kinking under compressive loads[J]. Composite Structures, 2016, 160: 547-559. [23] YOUSAF Z, POTLURI P, WITHERS P J, et al. Digital element simulation of aligned tows during compaction validated by computed tomography (CT)[J]. International Journal of Solids and Structures, 2018, 154: 78-87. [24] THOMPSON A J, EI SAID B, IVANOV D S, et al. High fidelity modelling of the compression behaviour of 2D woven fabrics[J]. International Journal of Solids and Structures, 2018, 154: 104-113. |