[1] SUN X F, HE M J, LI Z. Novel engineered wood and bamboo composites for structural applications: State-of-art of manufacturing technology and mechanical performance evaluation[J]. Construction and Building Materials, 2020, 249: 118751. [2] HABIBI M K, SAMAEI A T, GHESHLAGHI B, et al. Asymmetric flexural behavior from bamboo′s functionally graded hierarchical structure: Underlying mechanisms[J]. ActaBiomaterialia, 2015, 16: 178-186. [3] 李延军, 许斌, 张齐生, 等. 我国竹材加工产业现状与对策分析[J]. 林业工程学报, 2016, 1(1): 2-7. [4] 肖岩, 单波. 现代竹结构[M]. 北京: 中国建筑工业出版社, 2013. [5] 冷予冰, 许清风, 陈玲珠. 工程竹在建筑结构中的应用研究进展[J]. 建筑结构, 2018, 48(10): 89-97. [6] SHARMA B, GATOO A, BOCK M, et al. Engineered bamboo for structural applications[J]. Construction and Building Materials, 2015, 81: 66-73. [7] 于文吉. 我国重组竹产业发展现状与机遇[J]. 世界竹藤通讯, 2019, 17(3): 1-4. [8] YU Y L, ZHU R X, WU B L, et al. Fabrication, material proper-ties, and application of bamboo scimber[J]. Wood Science and Technology, 2015, 49: 83-98. [9] 余养伦. 高性能竹基纤维复合材料制造技术及机理研究[D]. 北京: 中国林业科学研究院, 2014. [10] 张俊珍, 任海清, 钟永, 等. 重组竹抗压与抗拉力学性能的分析[J]. 南京林业大学学报(自然科学版), 2012, 36(4): 107-111. [11] HUANG DS, BIAN YL, ZHOU AP, et al. Experimental study on stress-strain relationships and failure mechanisms of parallel strand bamboo made from phyllostachys [J]. Construction and Building Materials, 2015, 77: 130-138. [12] 上官蔚蔚. 重组竹物理力学性质基础研究[D]. 北京: 中国林业科学研究院, 2015. [13] 吴文清, 宋晓东. 重组竹基本力学性能的试验分析与研究[J]. 武汉理工大学学报, 2017, 39(4): 46-51. [14] 田黎敏, 靳贝贝, 郝际平. 现代竹结构的研究与工程应用[J]. 工程力学, 2019, 36(5): 1-18, 27. [15] BLANK L, FINK G, JOCKER R, et al. Quasi-brittle fracture and size effect of glued laminated timber beams[J]. European Journal of Wood and Wood Products, 2017, 75: 667-681. [16] 谢鹏, 刘问, 胡雨村, 等. 重组竹横向准脆性断裂的断裂参数[J]. 复合材料学报, [2019-11-28]. http://doi.org/10.13801/j.cnki.fhclxb.20191127.001. [17] 杜修力, 金浏, 李东. 混凝土与混凝土结构尺寸效应述评(Ⅰ): 材料层次[J]. 土木工程学报, 2017, 50(9): 28-45. [18] BAZANT Z P. Size effect in blunt fracture: Concrete, rock, metal[J]. ASCE Journal of Engineering Mechanics, 1984, 110(4): 518-535. [19] SMITH I. Fracture and fatigue in wood[M]. New York: Wiley Press, 2013. [20] HOOVER C G, BAZANT Z P. Universal size-shape effect law based on comprehensive concrete fracture tests[J]. ASCE journal of Engineering Mechanics, 2014, 140(3): 473-479. [21] LIU W, YU Y, HU X Z, et al. Quasi-brittle fracture criterion of bamboo-based fiber composites in transverse direction based on boundary effect model[J].Composite Structures, 2019, 220: 347-354. [22] HU X Z, GUAN J F, WANG Y S, et al. Comparison of boundary and size effect models based on new developments[J]. Engineering Fracture Mechanics, 2017, 175: 146-167. [23] WANG Y S, HU X Z. Determination of tensile strength and fracture toughness of granite using notched three-point-ben samples[J]. Rock Mechanics and Rock Engineering, 2017, 50: 17-28. [24] ZHANG C G, HU X Z, WU Z M, et al. Influence of grain size on granite strength and toughness with reliability by normal distribution[J]. Theoretical and Applied Fracture Mechanics, 2018, 96: 534-544. [25] TAD H, PARIS P C, IRWIN G R. The stress analysis of cracks handbook[M]. New York: ASME Press, 2000: 52-54. |