[1] SHYR T W, PAN Y H. Impact resistance and damage characteristics of composite laminates[J]. Composite Structures, 2003, 62(2): 193-203. [2] 霍契机. 纤维增强复合材料抗高速弹体冲击性能研究[D]. 武汉: 武汉理工大学, 2016. [3] 李汶蔚, 梅杰, 黄威. 碳纤维增强复合材料层合板的抗冲击性能[J]. 高压物理学报, 2020, 34(2): 59-66. [4] 李善恩, 缪馥星, 周风华, 等. 玻璃钢纤维增强塑料薄壁管抗冲击性能的实验研究[J]. 复合材料学报, 2018, 35(12): 3324-3330. [5] 洪波. 芳纶纤维增强天然橡胶复合材料的性能研究[D]. 贵阳: 贵州大学, 2015. [6] 孔春凤, 田伟, 刘双双, 等. 纤维混杂增强复合材料的制备及其抗冲击性能研究[J]. 现代纺织技术, 2015, 23(4): 20-23, 28. [7] ESPINOSA H D, RIM J E, BARTHELAT F, et al. Merger of structure and material in nacre and bone-Perspectives on de novo biomimetic materials[J]. Progress in Materials Science, 2009, 54(8): 1059-1100. [8] CHEN P Y, MCKITTRICK J, MEYERS M A. Biological materials: Functional adaptations and bioinspired designs[J]. Progress in Materials Science, 2012, 57(8): 1492-704. [9] RIM J E, ZAVATTIERI P, JUSTER A, et al. Dimensional analysis and parametric studies for designing artificial nacre[J]. Journal of the mechanical behavior of biomedical materials, 2011, 4(2): 190-211. [10] 曾煌棚. 基于无网格kp-Ritz法的功能梯度复合材料层合板振动与屈曲分析[D]. 南京: 南京理工大学, 2018. [11] SOHN M S, HU X Z, KIM J K, et al. Impact damage characterisation of carbon fibre/epoxy composites with multi-layer reinforcement[J]. Composites Part B, 2000, 31(8): 681-691. [12] DAVIES G A O, HITCHINGS D, WANG J. Prediction of threshold impact energy for onset of delamination in quasi-isotropic carbon/epoxy composite laminates under low-velocity impact[J]. Composites Science and Technology, 2000, 60(1): 1-7. [13] LIU P F, ZHENG J Y. Progressive failure analysis of carbon fiber/epoxy composite laminates using continuum damage mechanics[J]. Materials Science & Engineering A, 2008, 485(1): 711-717. [14] WANG S X, WU L Z, MA L. Low-velocity impact and residual tensile strength analysis to carbon fiber composite laminates[J]. Materials and Design, 2009, 31(1): 118-125. [15] 顾善群, 刘燕峰, 李军, 等. 碳纤维/环氧树脂复合材料高速冲击性能[J]. 材料工程, 2019, 47(8): 110-117. [16] 陈鑫, 马士东, 刘升辉. 基于ABAQUS碳纤维树脂基复合材料抗冲击性能研究[J]. 科技风, 2019(2): 194-195. [17] TRANA P, NGOA T D, GHAZLA A. Numerical modelling of hybrid elastomeric composite panels subjected to blast loadings[J]. Composite Structures, 2016, 153: 108-122. [18] 蒋万乐, 孙耀宁, 王国建, 等. 玻璃纤维层合板低能量冲击试验研究[J]. 机械设计与制造, 2019(5): 18-21. [19] 骆传龙, 倪爱清, 王继辉, 等. 玻璃纤维增强聚丙烯和环氧复合材料低速冲击损伤对比研究[J]. 玻璃钢/复合材料, 2019(10): 46-50. [20] KANG T J, KIM C. Energy-absorption mechanisms in Kevlar multiaxial warp-knit fabric composites under impact loading[J]. Composites Science and Technology, 2000, 60(5): 773-784. [21] ANSARI M, CHAKRABARTI A. Impact behavior of FRP composite plate under low to hyper velocity impact[J]. Composites Part B, 2016, 95: 462-474. [22] 刘晓宇, 李哲, 翟奋楼. 平纹芳纶织物/环氧树脂复合材料抗冲击性能研究[J]. 航空制造技术, 2018, 61(7): 89-92, 101. [23] OCHOLA R O, MARCUS K, NURICK G N, et al. Mechanical behaviour of glass and carbon fibre reinforced composites at varying strain rates[J]. Composite Structures, 2004, 63(3): 455-467. [24] WONDERLY C, GRENESTEDT J, FERNLUND G, et al. Comparison of mechanical properties of glass fiber/vinyl ester and carbon fiber/vinyl ester composites[J]. Composites Part B, 2005, 36(5): 417-426. [25] HOSSEINZADEH R, SHOKRIEH M M, LESSARD L. Damage behavior of fiber reinforced composite plates subjected to drop weight impacts[J]. Composites Science and Technology, 2005, 66(1): 61-68. [26] TEKALUR S A, SHIVAKUMAR K, SHUKLA A. Mechanical behavior and damage evolution in E-glass vinyl ester and carbon composites subjected to static and blast loads[J]. Composites Part B, 2008, 39(1): 57-65. [27] NAIK N K, RAMASIMHA R, ARYA H, et al. Impact response and damage tolerance characteristics of glass-carbon/epoxy hybrid composite plates[J]. Composites Part B, 2001, 32(7): 565-574. [28] GUSTIN J, JONESON A, MAHINFALAH M, et al. Low velocity impact of combination Kevlar/carbon fiber sandwich composites[J]. Composite Structures, 2004, 69(4): 396-406. [29] HOSUR M V, ADBULLAH M, JEELANI S. Studies on the low-velocity impact response of woven hybrid composites[J]. Composite Structures, 2004, 67(3): 253-262. [30] SEVKAT E, LIAW B, DELALE F, et al. Drop-weight impact of plain-woven hybrid glass-graphite /toughened epoxy composites[J]. Composites Part A, 2009, 40(8): 1090-1110. [31] SAYER M, BEKTAS N B, SAYMAN O. An experimental investigation on the impact behavior of hybrid composite plates[J]. Composite Structures, 2009, 92(5): 1256-1262. [32] YANG B, WANG Z Q, ZHOU L M, et al. Experimental and numerical investigation of interply hybrid composites based on woven fabrics and PCBT resin subjected to low-velocity impact[J]. Composite Structures, 2015, 132: 464-476. [33] 鲍子贺, 牛一凡, 严炎, 等. 混杂纤维复合材料力学性能及其低速冲击性能研究[J]. 塑料工业, 2018, 46(8): 80-84, 94. [34] 苏波, 张抟, 于国军, 等. 平纹织物混杂纤维复合材料低速冲击性能试验研究[J]. 玻璃钢/复合材料, 2019(11): 58-63. [35] 易凯, 孙建波, 杨智勇, 等. 混杂纤维复合材料层板的抗弹冲击性能[J]. 宇航材料工艺, 2019, 49(1): 82-85. [36] TRAN P, NGO T D, MENDIS P. Bio-inspired composite structures subjected to underwater impulsive loading[J]. Computational Materials Science, 2014, 82: 134-139. [37] FLORES-JOHNSON E A, SHEN L, GUIAMATSIA I, et al. Numerical investigation of the impact behaviour of bioinspired nacre-like aluminium composite plates[J]. Composites Science and Technology, 2014, 96: 13-22. [38] FLORES-JOHNSON E A, SHEN L, GUIAMATSIA I, et al. A numerical study of bioinspired nacre-like composite plates under blast loading[J]. Composite Structures, 2015, 126: 329-336. [39] GU G X , TAKAFFOLI M, HSIEH A J, et al. Biomimetic additive manufactured polymer composites for improved impact resistance[J]. Extreme Mechanics Letters, 2016, 9: 317-323. [40] TRANA P, NGOA T D, GHAZLA A, et al. Bimaterial 3D printing and numerical analysis of bio-inspired composite structures under in-plane and transverse loadings[J]. Composites Part B, 2017, 108: 210-223. [41] GINZBURG D, PINTO F, IERVOLINO O, et al. Damage tolerance of bio-inspired helicoidal composites under low velocity impact[J]. Composite Structures, 2017, 161: 187-203. [42] QIAO P Z, YANG M J. Impact analysis of fiber reinforced polymer honeycomb composite sandwich beams[J]. Composites Part B, 2007, 38(5-6): 739-750. [43] XIE S C, JING K K, ZHOU H, et al. Mechanical properties of Nomex honeycomb sandwich panels under dynamic impact[J]. Composite Structures, 2020, 235: 111814. [44] PETTERSSON A, MAGNUSSON P, LUNDBERG P, et al. Titanium-titanium diboride composites as part of a gradient armour material[J]. International Journal of Impact Engineering, 2005, 32(1): 387-399. [45] CHEN H C, CHEN Y L, SHEN B C. Ballistic resistance analysis of double-layered composite material structures[J]. Theoretical and Applied Fracture Mechanics, 2012, 62(1):5-25. [46] CHEN Y L, CHEN H C. Penetration depth of closed-cell aluminum foam sandwich structures under low velocity impact[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, 2012, 10(28): 51-58 [47] LARSON R A, PALAZOTTO A N, GARDENIER H E. Impact response of titanium and titanium boride monolithic and functionally graded composite plates[J]. AIAA Journal, 2009, 47(3): 676-691. [48] 毛贻齐. 低速冲击下损伤层合/功能梯度板壳的非线性动力学研究[D]. 长沙: 湖南大学, 2011. [49] 毕贤顺, 陈华艳. FGM受冲击载荷作用下裂纹尖端应力的数值分析[J]. 辽宁工程技术大学学报(自然科学版), 2011, 30(4): 522-525. [50] KHALILI S M R, MALEKZADEH K, GORGABAD A V. Low velocity transverse impact response of functionally graded plates with temperature dependent properties[J]. Compos Struct, 2013(96): 64-74. [51] ZHANG X, ZHANG H. Optimal design of functionally graded foam material under impact loading[J]. International Journal of Mechanical Sciences, 2013, 68: 199-211. [52] GUNES R, AYDIN M, KEMAL APALAK M, et al. Experimental and numerical investigations of low velocity impact on functionally graded circular plates[J]. Composites Part B: Engineering, 2014, 59:21-32. [53] 董妍. SiCp/Al功能梯度复合材料冲击韧性的研究[J]. 机械工程师, 2016(6): 51-52. [54] HUANG C Y, CHEN Y L. Design and impact resistant analysis of functionally graded Al2O3-ZrO2 ceramic composite[J]. Materials & design, 2016, 91: 294-305. [55] 李祥瑞. 功能梯度板在低速冲击下的响应分析[D]. 邯郸: 河北工程大学, 2018. |