[1] 罗益锋. 先进复合材料的研发目标与发展方向[J]. 高科技纤维与应用, 2013, 38(4): 1-10. [2] ARIF S, ARMBRUSTER O, KAUTEK W. Pulse laser particulate separation from polycarbonate: Surface acoustic wave and thermomechanical mechanisms[J]. Applied Physics A, 2013, 111(2): 539-548. [3] VEIKO V P, MUTIN T Y, SMIRNOV V N, et al. Laser decontamination of radioactive nuclides polluted surfaces[J]. Laser Physics, 2011, 21(3): 608-613. [4] 李春威. 复合材料胶接技术的发展与应用[J]. 航空制造技术, 2011(20): 88-91. [5] KRELING S, FISCHER F, DELMDAHL R, et al. Analytical characterization of CFRP laser treated by excimer laser radiation[J]. Physics Procedia, 2013, 41: 282-290. [6] BOSSI R, PIEHL M. Bonding primary aircraft structure: The issues[J]. Manufacturing Engineering, 2011, 146(3): 101-109.[7] XU W, YAO W X. Analysis and studies on the threats to the composite material from laser[C]//Applied Optics and Photonics China (AOPC2015). Beijing: 2015. [8] YOKOZEKI T, ISHIBASHI M, KOBAYASHI Y, et al. Evaluation of adhesively bonded joint strength of CFRP with laser treatment[J]. Advanced Composite Materials, 2015, 25(4): 317-327. [9] NATTAPAT M, MARIMUTHU S, KAMARA A M, et al. Laser surface modification of carbon fiber reinforced composites[J]. Materialsand Manufacturing Processes, 2015, 30(12): 1450-1456. [10] TAO R, ALFANO M, LUBINEAU G. Laser-based surface patterning of composite plates for improved secondary adhesive bonding[J]. Composites Part A: Applied Science and Manufacturing, 2018, (109): 84-94. [11] AKMAN E, ERDǑAN Y, BORA M Ǒ, et al. Investigation of accumulated laser fluence and bondline thickness effects on adhesive joint performance of CFRP composites[J]. International Journal of Adhesion and Adhesives, 2019, 89: 109-116. [12] BURNETT L H, CONCEICAO E N, PELINOS J E, et al. Comparative study of influence on tensile bond strength of a composite to dentin using Er: YAG laser, air abrasion, or air turbine for preparation of cavities[J]. Journal of Clinical Laser Medicine Surgery, 2001, 19(4): 199-202. [13] WOHL C J, BELCHER M A, CHEN L, et al. Laser ablative patterning of copoly (imide siloxane)s generating superhydrophobic surfaces[J]. Langmuir, 2010, 26(13): 11469-11478. [14] OZEL M. Behavior of concretebeams reinforced with 3-D fiber reinforcedplastic grids[J]. Special Publication, 1999, 188: 145-156. [15] 李长青, 许艺, 任攀, 等. 碳纤维/环氧树脂复合材料表面激光选择性消融预处理[J]. 中国表面工程, 2016, 29(1): 118-124. [16] KÖCKRITZ T, SCHIEFER T, JANSEN I, et al. Improving the bond strength at hybrid-yarn textile thermoplastic composites for high-technology applications by laser radiation[J]. International Journal of Adhesion and Adhesives, 2013, 46: 85-94. [17] MAN H, LI M, YUE T. Surface treatment of thermoplastic composites with an excimer laser[J]. International Journal of Adhesion & Adhesives, 1998, 18(3): 151-157. [18] ROTEL M, ZAHAVI J, TAMIR S, et al. Pre-bonding technology based on excimer laser surface treatment[J]. Applied Surface Science, 2000, 154(154): 610-616. [19] MOLITOR P, YOUNG T. Investigations into the use of excimer laser irradiation as a titanium alloy surface treatment in a metal to composite adhesive bond[J]. International Journal of Adhesion & Adhesives, 2004, 24(2): 127-134. [20] LAURENS P, GRISEL M, BÉNARD Q, et al. Surface treatment of carbon/epoxy and glass/epoxy composites with an excimer laser beam[J]. International Journal of Adhesion & Adhesives, 2006, 26(7): 543-549. [21] FISCHER F, KRELING S, DILGER K. Surface structuring of CFRP by using modern excimer laser sources[J]. Physics Procedia, 2012, 39: 154-160. [22] KRELING S, FISCHER F, DELMDAHL R, et al. Analytical characterization of CFRP laser treated by excimer laser radiation[J]. Physics Procedia, 2013, 41: 282-290. [23] 孟庆杰, 石军威, 徐亮, 等. 空心石英玻璃纤维增强氰酸酯基低介电复合材料的制备及性能分析[J]. 材料导报, 2018, 32(s1): 110-112. [24] 王月友. 碳纤维增强氰酸酯树脂基导热复合材料研究[D]. 北京: 中国航天科技集团公司第一研究院, 2018. [25] 徐菁, 袁国青. 激光处理GF/E与铝板的胶接性能研究[C]//中国力学大会2019论文集. 2019. [26] 蔡敏, 张伟, 张晓兵, 等. 激光预处理复合材料表面形貌和胶接件剪切强度研究[J]. 应用激光, 2020, 40(3): 435-441. [27] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. 胶粘剂单搭接拉伸剪切强度试验方法(复合材料对复合材料): GB/T 33334—2016[S]. 北京: 中国标准出版社, 2016. |