[1] CHAI G B, ZHU S. A review of low-velocity impact on sandwich structures[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials Design and Applications, 2011, 225(4): 207-230. [2] 郭静静. 复合材料夹层板低速冲击及压缩失效研究 [D]. 大连: 大连理工大学, 2019. [3] XIONG J, MA L, WU L Z, et al. Mechanical behavior and failure of composite pyramidal truss core sandwich columns[J]. Composites Part B: Engineering, 2011, 42(4): 938-945. [4] 谭年富, 陈秀华, 法洋洋, 等. 泡沫夹层复合材料的低速冲击损伤及剩余强度的数值模拟[J]. 机械工程材料, 2012, 8: 89-94. [5] XUE X W, ZHANG C F, CHEN W, et al. Study on the impact resistance of honeycomb sandwich structures under low-velocity/heavy mass[J]. Composite Structures, 2019, 226: 111223. [6] CASTANIE B, BOUVET C, GINOT M. Review of composite sand wich structure in aeronautic applications[J]. Composites Part C: Open Access, 2020, 1: 100004. [7] MYKOLA S. 复合材料蜂窝夹芯板低速冲击损伤分析[D]. 哈尔滨: 哈尔滨工业大学, 2019. [8] 齐佳旗, 段玥晨, 李成, 等. 低速冲击下铝蜂窝夹层板的动态响应研究[J]. 复合材料科学与工程, 2019(5): 5-11. [9] MCQUING T D A, KAPANIA R K A, SCOTTI S J B, et al. Compression after impact experiments on thin face sheet honeycomb core sandwich panels[J]. Journal of Spacecraft and Rockets, 2014, 51(1): 253-256. [10] SCHNEIDER C, KAZEMAHVAZI S, RUSSELL B P, et al. Impact response of ductile self-reinforced composite corrugated sandwich beams[J]. Composites Part B: Engineering, 2016, 99: 121-131. [11] HE W T, LIU J X, TAO B, et al. Experimental and numerical research on the low velocity impact behavior of hybrid corrugated core sandwich structures[J]. Composite Structures, 2016, 158: 30-43. [12] GILIOLI A, SBARUFATTI C, MANES A, et al. Compression after impact test (CAI) on NOMEXTM honeycomb sandwich panels with thin aluminum skins[J]. Composites Part B: Engineering, 2014, 67: 313-325. [13] YANG B, WANG Z Q, ZHOU L M, et al. Study on the low-velocity impact response and CAI behavior of foam-filled sandwich panels with hybrid facesheet[J]. Composite Structures, 2015, 132: 1129-1140. [14] RAYJADE G, RAO G. Study of composite sandwich structure and bending characteristics-a review[J]. International Journal of Current Engineering and Technology, 2015, 5(2): 797-802. [15] ZAID N Z M, REJABE M R M, MOHAMED N A N. Sandwich structure based on corrugated-core: A review [J]. Matec Web of Conferences, 2016, 74: 740029. [16] 王文涛. 钛合金波纹夹芯结构制备及力学性能研究[D]. 南京: 南京航空航天大学, 2017. [17] 王杰. 复合材料泡沫夹层结构低速冲击与冲击后压缩性能研究[D]. 上海: 上海交通大学, 2013. [18] ZHANG W, QIN Q H, LI J F, et al. Deformation and failure of hybrid composite sandwich beams with a metal foam core under quasi-static load and low-velocity impact[J]. Composite Structures, 2020, 242: 112175. [19] 查晓雄. 建筑用隔热夹芯板结构: 金属和非金属表面[M]. 湖北: 科学出版社, 2011: 2-8. [20] XUE X W, ZHANG C F, CHEN W, et al. Study on the impact resistance of honeycomb sandwich structures under low-velocity/heavy mass[J]. Composite Structures, 2019, 226: 111223. [21] 张广成, 何祯, 刘良威, 等. 夹层结构复合材料低速冲击试验与分析[J]. 复合材料学报, 2012, 29(4): 170-177. [22] HE W T, LIU J X, WANG S Q, et al. Low-velocity impact response and post-impact flexural behaviour of composite sandwich structures with corrugated cores[J]. Composite Structures, 2018, 189: 37-53. [23] WOWK D, REYNO T, YEUNG R, et al. An experimental and numerical investigation of core damage size in honeycomb sandwich panels subject to low-velocity impact[J]. Composite Structures, 2020, 254: 112739. [24] FERABOLI P. Damage resistance characteristics of thick-core honeycomb composite panels[C]//47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference 14th AIAA/ASME/AHS Adaptive Structures Conference 7th. 2006: 2169. [25] FERABOLI P, KEDWARD K T. A new composite structure impact performance assessment program[J]. Composites Science and Technology, 2006, 66(10): 1336-1347. [26] 曹兵妥. 金属波纹板夹层结构的冲击力学行为[D]. 西安: 西北工业大学, 2018. [27] LIU J X, HE W T, XIE D, et al. The effect of impactor shape on the low-velocity impact behavior of hybrid corrugated core sandwich structures[J]. Composites Part B: Engineering, 2017, 111: 315-331. [28] 潘晋, 吴天昊, 周初阳, 等. 铝合金波纹夹层板在低速冲击下的耐撞性研究[J]. 武汉理工大学学报(交通科学与工程版), 2017, 41(6): 929-933. [29] ZHAO T, JIANG Y, ZHU Y, et al. An experimental investigation on low-velocity impact response of a novel corrugated sandwiched composite structure[J]. Composite Structures, 2020, 252: 112676. [30] HE W, LIU J B, WANG S X, et al. Low-velocity impact behavior of X-Frame core sandwich structures-Experimental and numerical investigation[J]. Thin-Walled Structures, 2018, 131:718-735. [31] KILICASLAN C, GUDEN M, ODACI K, et al. The impact responses and the finite element modeling of layered trapezoidal corrugated aluminum core and aluminum sheet interlayer sandwich structures[J]. Materials & Design, 2013, 46: 121-133. [32] 张啸. 夹层板在低速冲击下的响应与比较[D]. 大连: 大连理工大学, 2017. [33] BOONKONG T, SHEN Y O, GUAN Z W, et al. The low velocity impact response of curvilinear-core sandwich structures[J]. International Journal of Impact Engineering, 2016, 93: 28-38. [34] RUPP P, ELSNER P, WEIDENMANN K A. Small object low-velocity impact damage on hybrid sandwich structures with CFRP face sheets and aluminum foam cores[J]. International Journal of Crashworthiness, 2018, 23(6): 697-710. [35] 王家伟, 朱永祥, 韦成华, 等. Nomex蜂窝夹层结构弯曲刚度温度相关性的力学建模[J]. 复合材料学报, 2020, 37(2): 376-381. [36] 齐佳旗, 段玥晨, 铁瑛, 等. 结构参数对CFRP蒙皮-铝蜂窝夹层板低速冲击性能的影响[J]. 复合材料学报, 2020, 37(6): 1352-1363. [37] THOMAS T, TIWARI G. Crushing behavior of honeycomb structure: A review[J]. International Journal of Crashworthiness, 2019, 24(5): 555-579. [38] 俎政, 原天宇, 汤双双, 等. 蜂窝夹芯板多次低速冲击及冲击后剩余强度[J]. 科学技术与工程, 2019, 19(28): 101-109. [39] CASTANIE B, BOUVET C, AMINANDA Y, et al. Modelling of low-energy/low-velocity impact on Nomex honeycomb sandwich structures with metallic skins[J]. International Journal of Impact Engineering, 2008, 35(7): 620-634. [40] SUN M, WOWK D, MECHEFSKE C, et al. An analytical study of the plasticity of sandwich honeycomb panels subjected to low-velocity impact[J]. Composites Part B, 2019, 168: 121-128. [41] AUDIBERT C, ANDREANI A-S, LAINE É, et al. Discrete modelling of low-velocity impact on Nomex® honeycomb sandwich structures with CFRP skins[J]. Composite Structures, 2018, 207: 108-118. [42] 张立伟. 蜂窝铝夹芯板低速冲击实验与数值模拟研究[D]. 燕山: 燕山大学, 2018. [43] ZHANG Y W, YAN L L, ZHANG C, et al. Low-velocity impact response of tube-reinforced honeycomb sandwich structure[J]. Thin-Walled Structures, 2021, 158: 107188. [44] DAI X J, YUAN T Y, ZU Z G, et al. Experimental investigation on the response and residual compressive property of honeycomb sandwich structures under single and repeated low velocity impacts[J]. Materials Today Communications, 2020, 25: 101309. [45] 邓云飞, 曾宪智, 周翔, 等. 复合材料褶皱夹芯结构研究进展[J]. 复合材料学报, 2020, 12: 2966-2983. [46] 张延昌, 张世联, 翟高进. 基于折叠式夹层板船体结构耐撞性设计[J]. 船舶工程, 2009, 31(6): 1-5. [47] KILCHERT S, JOHNSON A F, Voggenreiter H. Modelling the impact behaviour of sandwich structures with folded composite cores[J]. Composites Part A: Applied Science and Manufacturing, 2014, 57: 16-26. [48] ZHANG C, TAN K T. Low-velocity impact response and compression after impact behavior of tubular composite sandwich structures[J]. Composites Part B, 2020, 193: 108026. [49] DEMIRCIOGLU T K, BALIKOGLU F, INSL O, et al. Experimental investigation on low-velocity impact response of wood skinned sandwich composites with different core configurations[J]. Materials Today Communications, 2018, 17: 31-39. [50] BASILY B B, ELSAYED E A. Dynamic axial crushing of multilayer core structures of folded Chevron patterns[J]. International Journal of Materials and Product Technology, 2004, 21: 169-185. [51] GATTAS J M, YOU Z. The behaviour of curved-crease foldcores under low-velocity impact loads[J]. International Journal of Solids and Structures, 2015, 53: 80-91. [52] 邓云飞, 张伟岐, 吴华鹏, 等. 泡沫填充的S型褶皱复合材料夹芯板低速冲击响应特性[J]. 复合材料学报, 2020, 38(8): 2605-2615. [53] BALABAN A C, TEE K F, TOYGAR M E. Low velocity impact behaviour of sandwich composite structures with e-glass/epoxy facesheets and PVC foam[J]. Procedia Structural Integrity, 2019, 18: 577-585. [54] ZHANG X Y, XU F, ZANG Y Y, et al. Experimental and numerical investigation on damage behavior of honeycomb sandwich panel subjected to low-velocity impact[J]. Composite Structures, 2020, 236: 111882. [55] HEIMBS S, CICHOSZ J, KLAUS M, et al. Sandwich structures with textile-reinforced composite foldcores under impact loads[J]. Composite Structures, 2010, 92(6): 1485-1497. [56] HOGSTROM P, RINGSBERG J W. Assessment of the crashworthiness of a selection of innovative ship structures[J]. Ocean Engineering, 2013, 59: 58-72. [57] EHLERS S, TABRI K, ROMANOFF J, et al. Numerical and experimental investigation on the collision resistance of the X-core structure[J]. Ships and Offshore Structures, 2012, 7: 21-29. [58] LIU J, HE Z, LIU J, et al. Bending response and failure mechanism of composite sandwich panel with Y-frame core[J]. Thin-Walled Structures, 2019, 145: 106387. [59] ST-PIERRE L, DESHPANDE V S, FLECK N A. The low velocity impact response of sandwich beams with a corrugated core or a Y-frame core[J]. International Journal of Mechanical Sciences, 2015, 91: 71-80. [60] LIU J L, LI C, DENG S H, et al. The edgewise compressive behavior and failure mechanism of the composite Y-frame core sandwich column[J]. Polymer Testing, 2020, 81: 106188. [61] ZHU Y F, SUN Y G. Dynamic response of foam core sandwich panel with composite facesheets during low-velocity impact and penetration[J]. International Journal of Impact Engineering, 2020, 139: 103508. [62] HUO X T, LIU H, LUO Q T, et al. On low-velocity impact response of foam-core sandwich panels[J]. International Journal of Mechanical Sciences, 2020, 181: 105681. [63] LI Z, ZHENG Z, YU J. Low-velocity perforation behavior of composite sandwich panels with aluminum foam core[J]. Journal of Sandwich Structures and Materials, 2013, 15(1): 92-109. [64] FENG D, AYMERICH F. Effect of core density on the low-velocity impact response of foam-based sandwich composites[J]. Composite Structures, 2020, 239: 112040. [65] ZHOU J, HASSAN M Z, GUAN Z W, et al. The low velocity impact response of foam-based sandwich panels[J]. Composites Science and Technology, 2012, 72(14): 1781-1790. [66] MOHMMED R, AHMED A, ELGALIBl M A, et al. Low velocity impact properties of foam sandwich composites: A brief review[J]. International Journal of Management Science Innovative Technology, 2014, 3: 579-591. [67] SHIPSHA A, HALLSTROM S, ZENKERT D. Failure mechanisms and modelling of impact damage in sandwich beams-a 2D approach: Part Ⅱ-analysis and modelling[J]. Journal of Sandwich Structures and Materials, 2003, 5(1): 33-51. [68] ST-PIERRE L, FLECK N A, DESHPANDE V S. The dynamic indentation response of sandwich panels with a corrugated or Y-frame core[J]. International Journal of Mechanical Sciences, 2015, 92: 279-289. [69] 周雄. 低速冲击下金属泡沫复合材料夹芯结构的力学特性研究[D]. 重庆: 重庆大学, 2017. [70] 蔡建丽. 泡沫夹层结构复合材料低速冲击损伤阻抗特性[D]. 南昌: 南昌航空大学, 2011. [71] RAJANEESH A, SRIDHAR I, RAJENDRAN S. Relative performance of metal and polymeric foam sandwich plates under low velocity impact[J]. International Journal of Impact Engineering, 2014, 65: 126-136. [72] 彭世伟, 陈立明, 刘后常, 等. 热塑性复合材料蜂窝夹芯板的低速冲击失效行为[J]. 重庆大学学报, 2020, 43(2): 82-90. [73] 王文涛, 陶杰. 三层钛合金波纹夹芯结构低速冲击性能研究[J]. 热加工工艺, 2019, 48(4): 74-78. [74] HEIMBS S. Impact on sandwich structures with folded core[C]//Workshop on Dynamic Failure of Composite and Sandwich Structures. Toulouse: 2011: 141-144. |