[1] 崔荣国, 郭娟, 程立海, 等. 全球清洁能源发展现状与趋势分析[J]. 地球学报, 2021, 42(2): 179-186. [2] 羊森林, 黄永东, 钟贤和, 等. 某大型风机叶片静力加载失效破坏原因分析[J]. 东方汽轮机, 2015(2): 25-29. [3] 王超, 李军向, 张石强, 等. 大型风力机叶片全尺寸静力测试分析[J]. 玻璃钢/复合材料, 2014(2): 23-26. [4] 闫文娟, 韩新月, 程朗, 等. 大型风电叶片的结构分析和测试[J]. 可再生能源, 2014, 32(8): 1140-1143. [5] 李成良, 张金峰, 张登刚, 等. 大型风电叶片全尺寸结构测试准确性研究[J]. 复合材料科学与工程, 2021(4): 83-88, 101. [6] YANG J, PENG C, XIAO J, et al. Application of videometric technique to deformation measurement for large-scale composite wind turbine blade[J]. Applied Energy, 2012, 98: 292-300. [7] POOZESH P, BAQERSAD J, NIEZRECKI C, et al. Large-area photogrammetry based testing of wind turbine blades[J]. Mechanical Systems and Signal Processing, 2017, 86: 98-115. [8] JENSEN F M, FALZON B G, ANKERSEN J, et al. Structural testing and numerical simulation of a 34 m composite wind turbine blade[J]. Composite Structures, 2006, 76(1-2): 52-61. [9] LEE H G, PARK J. Static test until structural collapse after fatigue testing of a full-scale wind turbine blade[J]. Composite Structures, 2016, 136: 251-257. [10] 李晓燕, 余志. 海上风力发电进展[J]. 太阳能学报, 2004, 25(1): 78-84. [11] 潘祖金, 乌建中. 全尺寸叶片结构非线性对静载测试的影响[J]. 同济大学学报(自然科学版), 2017(10): 81-87. [12] LEE K, AIHARA A, PUNTSAGDASH G, et al. Feasibility study on a strain based deflection monitoring system for wind turbine blades[J]. Mechanical Systems & Signal Processing, 2017, 82: 117-129. [13] LEE H G, PARK J. Linear relationship of damping ratios in resonance-type fatigue testing of a wind turbine blade[J]. Wind Energy, 2014, 17(7): 1119-1122. [14] 张磊安, 乌建中, 陈州全, 等. 兆瓦级风电叶片静力加载控制系统设计及试验[J]. 中国机械工程, 2011, 22(18): 2182-2185, 2208. [15] 周爱国, 曾智杰, 乌建中, 等. 风电叶片多点静力测试神经网络PID解耦控制[J]. 测控技术, 2021, 40(3): 123-129. [16] DNV-GL Renewables Certification. Rotor blades for wind turbines: DNVGL-ST-0376[S/OL].[2016-12-09].http:// www.dnvgl.com. |