[1] 陶杰, 李华冠, 潘蕾, 等. 纤维金属层板的研究与发展趋势[J]. 南京航空航天大学学报, 2015, 47(5): 626-636. [2] ZHANG J P, WANG Y, ZHANG J Z, et al. Characterizing the off-axis dependence of failure mechanism in notched fiber metal laminates[J]. Composite Structures, 2018, 185: 148-160. [3] CEPEDA-JIMÉNEZ C M, ALDERLIESTEN R C, RUANO O A, et al. Damage tolerance assessment by bend and shear tests of two multilayer composites: Glass fibre reinforced metal laminate and aluminium roll-bonded laminate[J]. Composites Science and Technology, 2009, 69: 343-348. [4] LAWCOCK G, YE L, MAI Y W, et al. The effect of adhesive bonding between aluminum and composite prepreg on the mechanical properties of carbon-fiber-reinforced metal laminates[J]. Composites Science and Technology, 1997, 57(1): 35-45. [5] KHALILI S M R, MITTAL R K, KALIBAR S G. A study of the mechanical properties of steel/aluminium/GRP laminates[J]. Materials Science and Engineering A, 2005, 412: 137-140. [6] CHANG P Y, YEH P C, YANG J M. Fatigue crack initiation in hybrid boron/glass/aluminum fiber metal laminates[J]. Materials Science and Engineering A, 2008, 496: 273-280. [7] LIU Q, MA J B, KANG L, et al. An experimental study on fatigue characteristics of CFRP-steel hybrid laminates[J]. Materials and Design, 2015, 88: 643-650. [8] KAWAI M, KATO K. Effects of R-ratio on the off-axis fatigue behavior of unidirectional hybrid GFRP/Al laminates at room temperature[J]. International Journal of Fatigue, 2006, 28: 1226-1238. [9] LANGDON G S, LEMANSKI S L, NURICK G N, et al. Behaviour of fibre-metal laminates subjected to localised blast loading: Part Ⅰ-experimental observations[J]. International Journal of Impact Engineering, 2007, 34: 1202-1222. [10] LEMANSKI S L, NURICK G N, LANGDON G S, et al. Understanding the behaviour of fibre metal laminates subjected to localised blast loading[J]. Composite Structures, 2006, 76: 82-87. [11] LANGDON G S, CANTWELL W J, NURICK G N. Localised blast loading of fibre-metal laminates with a polyamide matrix[J]. Composites Part B: Engineering, 2007, 38: 902-913. [12] HE W T, WANG L F, LIU H C, et al. On impact behavior of fiber metal laminate (FML) structures: A state-of-the-art review[J]. Thin-Walled Structures, 2021, 167: 108026. [13] BIENIA J, JAKUBCZAK P. Impact damage growth in carbon fibre aluminium laminates[J]. Composite Structures, 2017, 172: 147-154. [14] TAN W, FALZON B G, CHIU L N S, et al. Predicting low velocity impact damage and compression-after-impact (CAI) behaviour of composite laminates[J]. Composites Part A: Applied Science and Manufacturing, 2015, 71: 212-226. [15] YANG B, WANG Z, ZHOU L, et al. Study on the low-velocity impact response and CAI behavior of foam-filled sandwich panels with hybrid facesheet[J]. Composite Structures, 2015, 132: 1129-1140. [16] DHALIWAL G S, NEWAZ G M. Compression after impact characteristics of carbon fiber reinforced aluminum laminates[J]. Composite Structures, 2017, 160: 1212-1224. [17] RAJKUMAR G R, KRISHNA M, NARASIMHA M H N, et al. Experimental investigation of low-velocity repeated impacts on glass fiber metal composites[J]. Journal of Materials Engineering and Performance, 2012, 21(7): 1485-1490. [18] YAO L, ZHANG S F, CAO X J, et al. Tensile mechanical behavior and failure mechanisms of fiber metal laminates under various temperature environments[J]. Composite Structures, 2022, 115142. [19] YAO L, YU H, WANG C Z, et al. Numerical and experimental investigation on the oblique successive impact behavior and accumulated damage characteristics of fiber metal laminates[J]. Thin-Walled Structures, 2021, 166: 108033. [20] XIONG Y, POON C, STRAZNICKY P V, et al. A prediction method for the compressive strength of impact damaged composite laminates[J]. Composite Structures, 1995, 30(4): 357-367. |