[1] ZHANG G, XUE Y, LIU P, et al. High emissivity double-layer coating on the flexible aluminum silicate fiber fabric with enhanced interfacial bonding strength and high temperature resistance[J]. Journal of the European Ceramic Society, 2021, 41(2): 1452-1458. [2] YI Z, YAN L, ZHANG T, et al. Thermal insulated and mechanical enhanced silica aerogel nanocomposite with in-situ growth of mullite whisker on the surface of aluminum silicate fiber[J]. Composites Part A: Applied Science and Manufacturing, 2020, 136: 105968. [3] ELIZABETH A R, CHRIS J G, HAROLD G S. Reactions and microstructure development in mullite fibers[J]. Journal of the American Ceramic Society, 1991, 74(10): 2404-2409. [4] CHAWLA N,KERR K, CHAWLA K. Monotonic and cyclic fatigue behavior of high performance ceramic fibers[J]. Journal of the American Ceramic Society, 2005, 88(1): 101-108. [5] KAYA C, GU X, AL-DAWERY I, et al. Microstructural development of woven mullite fiber reinforced mullite ceramic matrix composites by infiltration processing[J].Science and Technology of Advanced Materials, 2002, 3(1): 35-44. [6] YANG W J, WEI C X, YUAN A C Y, et al. Fire-retarded nanocomposite aerogels for multifunctional applications: A review[J]. Composites Part B: Engineering, 2022, 237: 109866. [7] CAI B, SAYEVICH V, GAPONIK N, et al. Emerging hierarchical aerogels: Self-assembly of metal and semiconductor nanocrystals[J]. Advanced Materials, 2018, 30(33): 1707518. [8] PENG F, JIANG Y, FENG J, et al. Thermally insulating, fiber-reinforced alumina-silica aerogel composites with ultra-low shrinkage up to 1500 ℃[J]. Chemical Engineering Journal, 2021, 411: 128402. [9] HAYASE G, KUGIMIYA K, OGAWA M, et al. The thermal conductivity of polymethyl-silsesquioxane aerogels and xerogels with varied pore sizes for practical application as thermal superinsulators[J]. Journal of Materials Chemistry A, 2014, 2(18): 6525-6531. [10] TIAN J, YANG Y, XUE T, et al. Highly flexible and compressible polyimide/silica aerogels with integrated double network for thermal insulation and fire-retardancy[J]. Journal of Materials Science & Technology, 2022, 105: 194-202. [11] JIANG D, QIN J, ZHOU X, et al. Improvement of thermal insulation and compressive performance of Al2O3-SiO2 aerogel by doping carbon nanotubes[J]. Ceramics International, 2022, 48(11): 16290-16299. [12] CAO F C, REN L L, LI X A. Synthesis of high strength monolithic alumina aerogels at ambient pressure[J]. Royal Society of Chemistry Advances, 2015, 5(23): 18025-18028. [13] HAYASE G, KUGIMIYA K, OGAWA M, et al. The thermal conductivity of polymethylsilsesquioxane aerogels and xerogels with varied pore sizes for practical application as thermal superinsulators[J]. Journal of Materials Chemistry A, 2014, 2(18): 6525-6531. [14] KANAMORI K, NAKANISHI K. Controlled pore formation in organotrialkoxysilane-derived hybrids: From aerogels to hierarchically porous monoliths[J]. Chemical Society Reviews, 2011, 40(2): 754-770. [15] RAO A P, PAJONK G M, RAO A V. Effect of preparation conditions on the physical and hydrophobic properties of two step processed ambient pressure dried silica aerogels[J]. Journal of Materials Science, 2005, 40(13): 3481-3489. |