[1] 尹玉霞, 李茂全, 周超, 等. 植入性医疗器械的研究进展[J]. 中国医疗设备, 2018, 33(7): 111-115. [2] 白占民. 植入性医疗器械的使用现状及监管对策[D]. 北京: 北京理工大学, 2015. [3] KURTZ S M, DEVIN J N. PEEK biomaterials in trauma, orthopedic, and spinal implants[J]. Biomaterials, 2007, 28(32): 4845-4869. [4] 李立宾, 李佳, 乔嘉琪. 生物医用材料(植入材料)国际标准体系研究[J]. 中国标准化, 2019(S1): 250-253. [5] 于成, 赵卫生, 贾伟. 生物医用复合材料的研究进展[J]. 玻璃钢/复合材料, 2012(2): 78-81. [6] 于婉琦, 杨诗卉, 张静洁, 等. 表面改性的碳纤维增强聚醚醚酮种植体的制备及其性能研究[J]. 现代口腔医学杂志, 2020, 34(4): 219-223. [7] DENAULT J, DUMOUCHEL M. Consolidation process of PEEK/carbon composite for aerospace applications[J]. Advanced Performance Materials, 1998, 5(1-2): 83-96. [8] 张辉, 方良超, 陈奇海, 等. 聚醚醚酮在航空航天领域的应用[J]. 新技术新工艺, 2018(10): 5-8. [9] MUTHIA N, YOCLU Y U, ALAN N, et al. Evolution of polyetheretherketone (PEEK) and titanium interbody devices for spinal procedures: A comprehensive review of the literature[J]. European Spine Journal, 2022, 31(10): 2547-2556. [10] 吴昊. 聚醚醚酮及其复合材料在医疗中的应用前景[J]. 塑料助剂, 2021(2): 32-35. [11] 陈东明. 带金属嵌件PEEK注塑制品的仿真分析与工艺优化[D]. 大连: 大连理工大学, 2017. [12] RAJAK D K, PAGARD D, MENEZES P L, et al. Fiber-reinforced polymer composites: Manufacturing, properties, and applications[J]. Polymers, 2019, 11(10): 1-37. [13] MISHRA A K. Effect of flow rate during injection molding on crystallization kinetics and ultimate properties of PEEK and its short fiber composites[D]. Newark: University of Delaware, 1989. [14] 程芳伟, 姜其斌, 张志军, 等. 注塑工艺对PTW/PEEK制品力学性能的影响[J]. 塑料工业, 2014, 42(10): 68-71. [15] 王秋峰, 周晓东, 侯静强. 长纤维增强热塑性复合材料的浸渍技术与成型工艺[J]. 纤维复合材料, 2006(2): 43-46. [16] NING H B, LU N, HASSEN A A, et. A review of long fibre thermoplastic (LFT) composites[J]. International Materials Reviews, 2020, 65(3): 164-188. [17] SCHWITALLA A D, SPINTING T, KALLAGE I, et al. Pressure behavior of different PEEK materials for dental implants[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 54: 295-304. [18] STAWARCZYK B, EICHBERGER M, UHRENBACHER J, et al. Three-unit reinforced polyetheretherketone composite FDPs: Influence of fabrication method on load-bearing capacity and failure types[J]. Dental Materials Journal, 2015, 34(1), 7-12. [19] GARCIA G D, RODRIGUEZ M M, RUSINEK A, et al. Investigation of mechanical impact behavior of short carbon-fiber-reinforced PEEK composites[J]. Composite Structures, 2015, 133: 1116-1126. [20] BOUDEAU N, LIKSONOV D, BARRIERE T, et al. Composite based on polyetheretherketone reinforced with carbon fibres, an alternative to conventional materials for femoral implant: Manufacturing process and resulting structural behaviour[J]. Materials & Design, 2012, 40: 148-156. [21] KURTZ S M, DAY J, ONG K, Chapter 14-isoelastic polyaryletheretherketone implants for total joint replacement[M]//PEEK Biomaterials Handbook. 2012: 221-242. [22] LI J H, DURANDET Y, HUANG X D, et al. Additively manufactured fiber-reinforced composites: A review of mechanical behavior and opportunities[J]. Journal of Materials Science & Technology, 2022, 119(24): 219-244. [23] WANG P, ZOU B, DING S L, et al. Effects of FDM-3D printing parameters on mechanical properties and microstructure of CF/PEEK and GF/PEEK[J]. Chinese Journal of Aeronautics, 2021, 34(9): 236-246. [24] OLADAPO B I, ZAHEDI S A, ISMAIL S O. 3D printing of PEEK-cHAp scaffold for medical bone implant[J]. Bio-Design and Manufacturing, 2021, 4(1): 44-59. [25] SHAKOURI T, CHA J R, OWJI N, et al. Comparative study of photoinitiators for the synthesis and 3D printing of a light-curable, degradable polymer for custom-fit hard tissue implants[J]. Biomedical Materials, 2020, 16: 1-15. [26] WILLIAM J W, CURTIS J H, ALON K, et al. Use of 3D printed models to create molds for shaping implants for surgical repair of orbital fractures[J]. Academic Radiology, 2020, 27(4): 536-542. [27] GUERRA A J, RODRIGUEZ C A, DEAN D, et al. Photopolymerizable resins for 3D-printing solid-cured tissue engineered implants[J]. Current Drug Targets, 2019, 20(8): 823-838. [28] ALIREZA N, ANAHITA R S, LI Y C, et al. Additive manufacturing of metallic and polymeric load-bearing biomaterials using laser powder bed fusion: A review[J]. Journal of Materials Science & Technology, 2021, 94(35): 196-215. [29] 蔡昊松, 陈鹏, 苏瑾, 等. 高温激光选区烧结聚醚醚酮/钽/铌点阵结构的力学性能研究[J]. 航空制造技术, 2021, 64(15): 52-57. [30] 郭芳, 黄硕, 刘宁, 等. 熔融沉积成型和选择性激光烧结打印聚醚醚酮髁突假体的生物力学研究[J]. 医用生物力学, 2021, 36(2): 264-270. [31] ZHANG L, YANG G J, BLAKE N, et al. Three-dimensional (3D) printed scaffold and material selection for bone repair[J]. Acta Biomaterialia, 2018, 84: 16-33. [32] CALVO M A, GÓMEZ I L, SIMON N C, et al. Evaluation of compressive and flexural properties of continuous fiber fabrication additive manufacturing technology[J]. Additive Manufacturing, 2018, 22: 157-164. [33] 郑娟. 基于FDM的聚醚醚酮/碳纳米管复合材料的制备及性能研究[D]. 上海: 东华大学, 2020. [34] FENG X, MA L, LIANG H, et al. Osteointegration of 3D-printed fully porous polyetheretherketone scaffolds with different pore sizes[J]. ACS Omega, 2020, 5(41): 26655-26666. [35] HAN X, YANG D, YANG C, et al. Carbon fiber reinforced PEEK composites based on 3D-printing technology for orthopedic and dental applications[J]. Journal of Clinical Medicine, 2019, 8(240): 1-17. [36] WANG P, ZOU B, XIAO H C, et al. Effects of printing parameters of fused deposition modeling on mechanical properties, surface quality, and microstructure of PEEK[J]. Journal of Materials Processing Technology, 2018, 271: 62-74. [37] JIA A, JOANNE E M, RATIMA S, et al. Design and 3D printing of scaffolds and tissues[J]. Engineering, 2015, 1(2): 261-268. [38] VAEZI M, BLACK C, GIBBS D M R, et al. Characterization of new PEEK/HA composites with 3D HA network fabricated by extrusion freeforming[J]. Molecules, 2016, 21(6): 1-21. [39] STAROSOLSKI Z A, KAN J H, ROSENFELD S D, et al. Application of 3-D printing (rapid prototyping) for creating physical models of pediatric orthopedic disorders[J]. Pediatric Radiology, 2014, 44(2): 216-221. [40] EVANS N T, TORSTRICK F B, LEE C, et al. High-strength, surface-porous polyether-ether-ketone for load-bearing orthopedic implants[J]. Acta Biomaterialia, 2015, 13: 159-167. [41] SUNPREET S, CHANDER P, SEERAM R. 3D printing of polyether-ether-ketone for biomedical applications[J]. European Polymer Journal, 2019, 114: 234-248. [42] 许治平. 高性能连续纤维增强聚醚醚酮复合材料的制备及性能研究[D]. 长春: 吉林大学, 2017. [43] 孙洪霖. 连续碳纤维增强聚醚醚酮复合材料制备及性能研究[D]. 上海: 东华大学, 2021. [44] 敖玉辉, 石飞, 尚垒, 等. 碳纤维增强聚醚醚酮复合材料的制备与性能[J]. 高分子材料科学与工程, 2014, 30(6): 161-164. [45] 刘亚男, 刘晨晓, 朱明浩, 等. 模压成型CF/PEKK与自动铺丝CF/PEEK热塑性复合材料对比研究[J]. 航空制造技术, 2021, 64(11): 50-57. [46] 滕凌虹, 曹伟伟, 朱波, 等. 纤维增强热塑性树脂预浸料的制备工艺及研究进展[J]. 材料工程, 2021, 49(2): 42-53. [47] 陈平, 于祺, 孙明, 等. 高性能热塑性树脂基复合材料的研究进展[J]. 纤维复合材料, 2005(2): 52-57. [48] 安学锋, 张明, 唐邦铭, 等. 柔性混编预浸料制造热塑性复合材料加筋结构[J]. 航空材料学报, 2006(3): 217-221. [49] 屈李端, 陈书华, 沈镇, 等. 连续CF/PEEK预浸料制造技术研究进展[J]. 航空制造技术, 2020, 63(5): 87-92. [50] REN F, YU Y, CAO M, et al. Effect of pneumatic spreading on impregnation and fiber fracture of continuous fiber-reinforced thermoplastic composites[J]. Journal of Reinforced Plastics and Composites, 2017, 36(21): 1554-1563. [51] 高亮, 贾伟, 石峰晖, 等. 反气相色谱法测定聚醚醚酮的表面性质及在提升热塑性复合材料层间性能中的应用[J]. 复合材料学报, 2022, 40(5): 1-12. |