[1] AIR A, SHAMSUDDOHA M, GANGADHARA P B. A review of type Ⅴ composite pressure vessels and automated fiber placement based manufacturing[J]. Composites Part B: Engineering, 2023, 253: 110573. [2] 伍庆龙, 张天强. 丰田燃料电池汽车Mirai技术分析[J]. 汽车文摘, 2020(4): 18-21. [3] 陈明和, 胡正云, 贾晓龙, 等. Ⅳ型车载储氢气瓶关键技术研究进展[J]. 压力容器, 2020, 37(11): 39-50. [4] 贾子璇. 塑料内衬复合材料储氢气瓶的结构设计及有限元验证[D]. 北京: 北京化工大学, 2020. [5] ZHANG M, LV H, KANG H, et al. A literature review of failure prediction and analysis methods for composite high-pressure hydrogen storage tanks[J]. International Journal of Hydrogen Energy, 2019, 44(47): 25777-25799. [6] 鄢家乐, 陈学东, 范志超, 等. 70 MPa车载Ⅳ型储氢气瓶铺层设计与实验验证[J]. 西安交通大学学报, 2022, 56(10): 71-80. [7] 李德翔. 氢气瓶缠绕工艺分析及机构设计[D]. 上海: 东华大学,2022. [8] 高智惠, 郭淑芬, 孙福龙, 等. 非金属内胆全缠绕气瓶关键技术分析及研究[J]. 汽车工艺师, 2022(Z1): 21-27. [9] 柯华, 查志伟, 郑虓. Ⅳ型储氢瓶用复合材料及制备工艺[J]. 纤维复合材料, 2022, 39(1): 15-21. [10] 陈旦. 碳纤维缠绕Ⅳ型复合材料压力容器的结构设计与研制[D]. 武汉: 武汉理工大学, 2019. [11] 徐彦龙. 缠绕复合气瓶的失效分析[D]. 武汉: 武汉工程大学,2015. [12] HUGAAS E, ECHTERMEYER A T. Estimating S-N curves for local fiber dominated fatigue failure in ring specimens representing filament wound pressure vessels with damage[J]. Composites Part C: Open Access, 2021, 5: 100135. [13] KHAMEDI R, AHMADI I, HASHEMI M, et al. Stiffness prediction of beech wood flour polypropylene composite by using proper fiber orientation distribution function[J]. Materials Science, Engineering, 2017, 30(4): 582-590. [14] SHABANI P, SHABANI N. Fatigue life prediction of high-speed composite craft under slamming loads using progressive fatigue damage modeling technique[J]. Engineering Failure Analysis, 2022, 131: 105818. [15] 梁双强. 开孔三维编织复合材料力学性能研究[D]. 上海: 东华大学, 2020. [16] GANESAN C, JOANNA P S. Fatigue life and residual strength prediction of GFRP composites: An experimental and theoretical approach[J]. Latin American Journal of Solidsand Structures, 2018, 15(7). [17] YAO L, CUI H, GUO L, et al. A novel total fatigue life model for delamination growth in composite laminates under generic loading[J]. Composite Structures, 2021, 258: 113402. [18] PLUMTREE A. A fatigue damage parameter for off-axis unidirectional fiber-reinforced composites[J]. International Journal of Fatigue, 1999, 21(8): 849-856. [19] WENG J, WEN W, ZHANG H. Multiaxial fatigue life prediction of composite materials[J]. Chinese Journal of Aeronautics, 2017, 30(3): 1012-1020. [20] ANAND K A,SURENDRA K. Fatigue life prediction of a hoop-wrapped composite CNG cylinder containing surface flaw[J]. International Journal of Emerging Technology and Advanced Engineering, 2014, 4(3): 2250-2459. [21] 黄其忠, 郑津洋, 胡军, 等. 复合材料气瓶的多轴疲劳寿命预测研究[J]. 玻璃钢/复合材料, 2016(11): 39-45. [22] 刘俭辉, 赵贺, 冉勇, 等. 基于临界面理论的多轴等效应变疲劳寿命预估模型[J]. 中国机械工程, 2022, 33(15): 1821-1827. [23] ZHOU W, WANG J, PAN Z, et al. Review on optimization design, failure analysis and non-destructive testing of composite hydrogen storage vessel[J]. International Journal of Hydrogen Energy, 2022, 47(91): 38862-38883. [24] AZEEM M, YA H H, ALAM M A, et al. Application of filament winding technology in composite pressure vessels and challenges: A Review[J]. Journal of Energy Storage, 2022, 49: 103468. [25] SOHN J M, HIRDARIS S, ROMANOFF J, et al. Development of numerical modelling techniques for composite cylindrical structures under external pressure[J]. Journal of Marine Science and Engineering, 2022, 10(4): 466. [26] PEPIN J, LAINÉ E, LAINÉ E, et al. Determination of key parameters responsible for polymeric liner collapse in hyperbaric type IV hydrogen storage vessels[J]. International Journal of Hydrogen Energy, 2018, 43(33):16386-16399. [27] ABDULREA K A,GHADIR A J. Strength analysis and fatigue life estimation of composite pressure vessel (CPV) based on the residual strain energy (RSE) approach[J]. International Journal for Computational Methods in Engineering Science and Mechanics, 2021, 22(2): 81-102. [28] VIGNOLI L L, SAVI M A. Multiscale failure analysis of cylindrical composite pressure vessel: A parametric study[J]. Latin American Journal of Solids and Structures, 2018, 15(11). [29] WANG L, WANG B, WEI S, et al. Prediction of long-term fatigue life of CFRP composite hydrogen storage vessel based on micromechanics of failure[J]. Composites Part B: Engineering, 2016, 97: 274-281. [30] 王恺, 吴茜, 汪文博, 等. 可重复使用复合材料气瓶设计及试验验证[J]. 宇航材料工艺, 2018, 48(6): 16-20. [31] KIM S W, YOSHIKAWA N, KOBAYASHI H, et al. Numerical fatigue life evaluation with experimental results for type Ⅲ accumulators[C]//Pressure Vessels and Piping Division. Proceedings of the ASME Pressure Vessels and Piping Conference. New York: American Society of Mechanical Engineers, 2018: 5-16. [32] WU E Q, ZHANG S H, XU W P, et al. Fatigue analysis of high-pressure hydrogen storage vessel based on optimum autofrettage pressure[J]. Journal of Reinforce Plastics and Composites, 2023, 42(7-8): 313-322. [33] JIA Z, LI T, CHIANG F, et al. An experimental investigation of the temperature effect on the mechanics of carbon fiber reinforced polymer composites[J]. Composites Science and Technology, 2018, 154: 53-63. [34] WANG X, TIAN M, CHEN X, et al. Advances on materials design and manufacture technology of plastic liner of type Ⅳ hydrogen storage vessel[J]. International Journal of Hydrogen Energy, 2022, 47(13): 8382-8408. [35] BLANC-VANNET P, PAPIN P, WEBER M, et al. Sample scale testing method to prevent collapse of plastic liners in composite pressure vessels[J]. International Journal of Hydrogen Energy, 2019, 44(17): 8682-8691. [36] YERSAK T A, BAKER D R, YANAGISAWA Y, et al. Predictive model for depressurization-induced blistering of type Ⅳ tank liners for hydrogen storage[J]. International Journal of Hydrogen Energy, 2017, 42(48): 28910-28917. [37] ZHANG Z, WANG C, HUANG G, et al. Thermal degradation behaviors and reaction mechanism of carbon fiber-epoxy composite from hydrogen tank by TG-FTIR[J]. Journal of Hazardous Materials, 2018, 357: 73-80. [38] DE M N, ORTIZ C R, ACOSTA B, et al. Compressed hydrogen tanks for on-board application: Thermal behaviour during cycling[J]. International Journal of Hydrogen Energy, 2015, 40(19): 6449-6458. [39] WANG D, LIAO B, HUA Z, et al. Experimental analysis on residual performance of used 70 MPa type Ⅳ composite pressure vessels[J]. Journal of Failure Analysis and Prevention, 2019, 19(1): 204-211. [40] 王迪. 不同缠绕工艺下复合材料气瓶力学性能研究[D]. 大连: 大连理工大学, 2017. [41] CHO S M, KIM K S, LEE K M, et al. A study on cycling life and failure mode of type3 cylinder treated with autofrettage pressure[J]. International Journal of Precision Engineering and Manufacturing, 2016, 17(12): 1685-1691. [42] 魏喜龙, 陈曰东, 王威力. 复合材料容器预紧压力和疲劳性能的关系[J]. 纤维复合材料, 2018, 35(2): 36-39. [43] 秦小强. 低温高压储氢气瓶结构设计及仿真分析[D]. 太原: 太原理工大学, 2020. [44] 秦小强, 邓贵德, 梁海峰. 自紧压力对全缠绕复合气瓶疲劳性能的影响[J]. 复合材料科学与工程, 2020(6): 57-61, 83. [45] 肖杰立, 饶聪, 沈伟, 等. 铝内胆碳纤维全缠绕气瓶铺层设计[J]. 材料科学与工艺, 2021, 29(5): 37-38, 32-36. [46] WU E Q, ZHAO Y, ZHAO B, et al. Fatigue life prediction and verification of high-pressure hydrogen storage vessel[J]. International Journal of Hydrogen Energy, 2021, 46(59): 30412-30422. [47] 郝春永, 王栋亮, 郑津洋, 等. 铝内胆复合材料储氢瓶爆破压力与疲劳寿命关系研究[J]. 工程设计学报, 2021, 28(5): 594-601. |