[1] 丛博洋. 复合材料在土木工程中的发展与应用[J]. 建筑工程技术与设计, 2018(25): 18-35. [2] 周长东, 黄承逵. FRP复合材料在国外土木工程中的应用[J]. 建筑技术, 2002, 33(11): 848-850. [3] 蔡菊生. 先进复合材料在航空航天领域的应用[J]. 合成材料老化与应用, 2018, 47(6): 94-97. [4] 尚金龙, 李思海, 陈贻明. 纤维增强塑料在航空航天领域中的应用[J]. 塑料工业, 2019, 47(1): 148-151. [5] 曹国辉, 汪子鹏, 王志宏, 等. 纤维增强复合材料在土木工程中的应用研究[J]. 湖南城市学院学报(自然科学版), 2011, 20(4): 1-5. [6] 臧德厚. 纤维增强复合材料在建筑工程中的应用[J]. 建材与装饰, 2020, 11(2): 43-44. [7] 叶华文, 唐诗晴, 段智超, 等. 纤维增强复合材料桥梁结构2019年度研究进展[J]. 土木与环境工程学报, 2020, 42(5): 192-200. [8] 杨勇新, 陈伟, 李彪, 等. 纤维增强复合材料在水工结构中的应用与发展前景[C]//第二十一届玻璃钢/复合材料学术交流会. 2016. [9] MA G, YAN L, SHEN W, et al. Effects of water, alkali solution and temperature ageing on water absorption, morphology and mechanical properties of natural FRP composites: Plant-based jute vs. mineral-based basalt[J]. Composites Part B: Engineering, 2018, 153: 398-412. [10] NANDAGOPAL R, BOAY C, NARASIMALU S. An empirical model to predict the strength degradation of the hygrothermal aged CFRP material[J]. Composite Structures, 2020, 236: 111876. [11] PRUSTY R, RATHORE D, RAY B. Water-induced degradations in MWCNT embedded glass fiber/epoxy composites: An emphasis on aging temperature[J]. Journal of Applied Polymer Science, 2017, 45: 45987. [12] 陆中宇. 玄武岩纤维增强树脂基复合材料的高温性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2016. [13] PHANI K, BOSE N. Hydrothermal ageing of CSM-laminate during water immersion-an acousto-ultrasonic study[J]. Journal of Materials Science, 1986, 21: 3633-3637. [14] WU G, DONG Z, WANG X, et al. Prediction of long-term performance and durability of BFRP bars under the combined effect of sustained load and corrosive solutions[J]. Journal of Composites for Construction, 2015, 19(3): 04014058. [15] TU J, XIE H, GAO K. Prediction of the long-term performance and durability of GFRP bars under the combined effect of a sustained load and severe environments[J]. Materials, 2020, 13(10): 2341. [16] BARBOSA A, FULCO A, GUERRA E, et al. Accelerated aging effects on carbon fiber/epoxy composites[J]. Composites Part B: Engineering, 2017, 110: 298-306. [17] GUO R, XIAN G, LI C, et al. Water uptake and interfacial shear strength of carbon/glass fiber hybrid composite rods under hygrothermal environments: Effects of hybrid modes[J]. Polymer Degradation and Stability, 2021, 193: 109723. [18] GUO R, XIAN G, LI F, et al. Hygrothermal resistance of pultruded carbon, glass and carbon/glass hybrid fiber reinforced epoxy composites[J]. Construction and Building Materials, 2022, 315: 125710. [19] WANG Z, ZHAO X, XIAN G, et al. Effect of sustained load and seawater and sea sand concrete environment on durability of basalt- and glass-fibre reinforced polymer (B/GFRP) bars[J]. Corrosion Science, 2018, 138: 200-218. [20] WANG Z, XIAN G, ZHAO X. Effects of hydrothermal aging on carbon fibre/epoxy composites with different interfacial bonding strength[J]. Construction and Building Materials, 2018, 161: 634-648. [21] WANG Z, ZHAO X, XIAN G, et al. Long-term durability of basalt- and glass-fibre reinforced polymer (BFRP/GFRP) bars in seawater and sea sand concrete environment[J]. Construction and Building Materials, 2017, 139: 467-489. [22] WANG Z, ZHAO X, XIAN G, et al. Durability study on interlaminar shear behaviour of basalt-, glass- and carbon-fibre reinforced polymer (B/G/CFRP) bars in seawater sea sand concrete environment[J]. Construction and Building Materials, 2017, 156: 985-1004. [23] STARKOVA O, ANISKEVICH K, SEVCENKO J. Long-term moisture absorption and durability of FRP pultruded rebars[J]. Materials Today: Proceedings, 2020, 34(6): 36-40. [24] ZHOU J, LUCAS J. Hygrothermal effects of epoxy resin. Part Ⅰ: The nature of water in epoxy[J]. Polymer, 1999, 40(20): 5505-5512. [25] 王自柯. FRP筋在模拟海水—海砂混凝土孔溶液浸泡下的耐久性研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. [26] PAN Y, XIAN G, LI H. Numerical modeling of moisture diffusion in an unidirectional fiber-reinforced polymer composite[J]. Polymer Composites, 2019, 40(1): 401-413. [27] LI C, XIAN G, HUI L. Water absorption and distribution in a pultruded unidirectional carbon/glass hybrid rod under hydraulic pressure and elevated temperatures[J]. Polymers, 2018, 10(6): 627. |