复合材料科学与工程 ›› 2024, Vol. 0 ›› Issue (3): 65-72.DOI: 10.19936/j.cnki.2096-8000.20240328.009

• 应用研究 • 上一篇    下一篇

基于机器视觉的短纤维复合材料的取向度提取方法

郑子君, 乔英, 邵家儒   

  1. 重庆理工大学 机械工程学院,重庆 400054
  • 收稿日期:2023-03-22 出版日期:2024-03-28 发布日期:2024-04-22
  • 作者简介:郑子君(1985—),男,博士,副教授,硕士生导师,研究方向为计算力学、复合材料多尺度力学,zhengzj@cqut.edu.cn。
  • 基金资助:
    国家自然科学基金(11702046);重庆市教委科学技术研究项目(KJQN202201113,KJQN202201105)

Extracting orientation index of short fiber reinforced composites by computer vision methods

ZHENG Zijun, QIAO Ying, SHAO Jiaru   

  1. Department of Mechanical Engineering, Chongqing University of Technology, Chongqing 400054, China
  • Received:2023-03-22 Online:2024-03-28 Published:2024-04-22

摘要: 纤维取向度对短纤维增强复合材料的宏观性质有着明显的影响。采用机器视觉方法从扫描电镜(SEM)照片中提取纤维取向度是一种兼顾效益和成本的做法。为准备训练和测试数据集,基于正交椭圆纤维闭合近似模型推导了一种取向分布,并结合接收-拒绝算法和RSA算法实现了短纤维复合材料几何结构的重构,从而生成大量模拟SEM图像。在此基础上,提出一种基于灰度共生矩阵的BP神经网络(GLCM-BP)用于取向度的预测,并与常见的形态学分割、结构张量关系、卷积神经网络算法(CNN)方案的结果进行了对比。算例表明,GLCM-BP模型能够很好地预测纤维取向度,测试数据的拟合相关性达到0.99,均方误差约为0.01,满足工程使用的需要。横向对比发现:结构张量公式在平面分布中的预测结果明显偏小;在低纤维体积分数时,形态学方法和GLCM-BP法预测结果最好;在高纤维体积分数时,GLCM-BP和卷积神经网络表现更好。本文提出的GLCM-BP法也有一定抵抗噪点的能力。

关键词: 短纤维增强复合材料, 取向度, 人工神经网络, 形态学, 机器视觉

Abstract: The orientation of fibers has a significant impact on the macroscopic properties of short fiber reinforced composite materials. The fiber orientation index is extracted from scanning electron microscope (SEM) images by machine vision methods. To build the training/testing data sets, a fiber orientation distribution is derived based on the orthogonal elliptic closed approximation, and then many simulated SEM images are generated by using the acceptance-rejection and random sequential adsorption algorithms. Based on these simulated images, a BP neural network based on gray-level co-occurrence matrix (GLCM-BP) was proposed to predict the fiber orientation index, and the results were compared with commonly used methods, including morphological segmentation, structure tensor relationship, and convolutional neural network (CNN) algorithms. The results showed that the GLCM-BP model could effectively predict the fiber orientation with a fitting correlation of 0.99 and a mean square error of approximately 0.01, meeting engineering requirements. In comparison, the structure tensor formula systematically underestimates the orientation in planar distributions; morphological and GLCM-BP methods perform better for low fiber volume fractions; GLCM-BP and CNN methods perform better for high fiber volume fractions. The proposed GLCM-BP method also shows capability to resist image noise.

Key words: short fiber reinforced composites, orientation index, artificial neural network, morphology, computer vision

中图分类号: