复合材料科学与工程 ›› 2024, Vol. 0 ›› Issue (4): 117-128.DOI: 10.19936/j.cnki.2096-8000.20240428.016
• 综述 • 上一篇
盛洁1, 刘航1, 王文乐2, 姜生坤1, 李明霞1, 黄正强3, 耿铁1*, 蒋林1*
收稿日期:
2023-11-28
出版日期:
2024-04-28
发布日期:
2024-04-28
通讯作者:
耿铁(1968—),男,博士,教授,博士生导师,主要从事先进材料成型工艺方面的研究,tiegeng2000@163.com。蒋林(1986—),女,博士,讲师,硕士生导师,主要从事先进复合材料加工方面的研究,jianglin@haut.edu.cn。
作者简介:
盛洁(1994—),女,博士研究生,主要从事复合材料成型技术方面的研究。
基金资助:
SHENG Jie1, LIU Hang1, WANG Wenle2, JIANG Shengkun1, LI Mingxia1, HUANG Zhengqiang3, GENG Tie1*, JIANG Lin1*
Received:
2023-11-28
Online:
2024-04-28
Published:
2024-04-28
摘要: 复合材料柔性致动器兼具灵活性、适应性和结构可设计性等特点,能够响应外界刺激而改变结构、形状和宏观性质,具有广阔的应用前景。本文总结了近几年复合材料柔性致动器在多刺激响应性与力学强度提高方面的研究进展,介绍了该类致动器的成型制备方法,分析了致动原理。从填料的维度出发,总结了各类填料在致动器响应速度、机械性能、多刺激响应能力方面的影响,总结了该类致动器在柔性机器人、微型医疗器械、精密传感器、折叠电子器件等方面的现状。最后,对多刺激响应型高强度复合材料致动器的发展前景进行展望,以期为设计制备具有新颖功能和更有挑战性的致动器提供借鉴和参考。
中图分类号:
盛洁, 刘航, 王文乐, 姜生坤, 李明霞, 黄正强, 耿铁, 蒋林. 多刺激响应型高强度复合材料柔性致动器研究进展[J]. 复合材料科学与工程, 2024, 0(4): 117-128.
SHENG Jie, LIU Hang, WANG Wenle, JIANG Shengkun, LI Mingxia, HUANG Zhengqiang, GENG Tie, JIANG Lin. Research progress on multi-stimulus responsive strong composite soft actuators[J]. COMPOSITES SCIENCE AND ENGINEERING, 2024, 0(4): 117-128.
[1] ILAMI M, BAGHERI H, AHMED R, et al. Materials, actuators, and sensors for soft bioinspired robots[J]. Advanced Materials, 2021, 33(19): 2003139. [2] HAM R, SUGAR T, VANDERBORGHT B, et al. Compliant actuator designs[J]. IEEE Robotics & Automation Magazine, 2009, 3(16): 81-94. [3] WORSNOPP T T, PESHKIN M A, COLGATE J E, et al. An actuated finger exoskeleton for hand rehabilitation following stroke[C]//2007 IEEE 10th International Conference on Rehabilitation Robotics. IEEE, 2007: 896-901. [4] UEKI S, KAWASAKI H, ITO S, et al. Development of a hand-assist robot with multi-degrees-of-freedom for rehabilitation therapy[J]. IEEE/ASME Transactions on Mechatronics, 2010, 17(1): 136-146. [5] WEGE A, HOMMEL G. Development and control of a hand exoskeleton for rehabilitation of hand injuries[C]//2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2005: 3046-3051. [6] LI M, PAL A, AGHAKHANI A, et al. Soft actuators for real-world applications[J]. Nature Reviews Materials, 2022, 7(3): 235-249. [7] ZHAO H, HU R, LI P, et al. Soft bimorph actuator with real-time multiplex motion perception[J]. Nano Energy, 2020, 76: 104926. [8] SONG J, SHEN D, CUI J, et al. Accelerated evolution of PRRSV during recent outbreaks in China[J]. Virus Genes, 2010, 41: 241-245. [9] KIM H, LEE J A, AMBULO C P, et al. Intelligently actuating liquid crystal elastomer-carbon nanotube composites[J]. Advanced Functional Materials, 2019, 29(48): 1905063. [10] XIE X, QU L, ZHOU C, et al. An asymmetrically surface-modified graphene film electrochemical actuator[J]. ACS Nano, 2010, 4(10): 6050-6054. [11] ROTHEMUND P, AINLA A, BELDING L, et al. A soft, bistable valve for autonomous control of soft actuators[J]. Science Robotics, 2018, 3(16): eaar7986. [12] HU W, LUM G Z, MASTRANGELI M, et al. Small-scale soft-bodied robot with multimodal locomotion[J]. Nature, 2018, 554(7690): 81-85. [13] BAI L, ZHANG Y, GUO S, et al. Hygrothermic wood actuated robotic hand[J]. Advanced Materials, 2023, 35(22): 2211437. [14] CHI Y, LI Y, ZHAO Y, et al. Bistable and multistable actuators for soft robots: Structures, materials, and functionalities[J]. Advanced Materials, 2022, 34(19): 2110384. [15] CHEN Y, YANG J, ZHANG X, et al. Light-driven bimorph soft actuators: design, fabrication, and properties[J]. Materials Horizons, 2021, 8(3): 728-757. [16] WANG M, CHENG Z W, ZUO B, et al. Liquid crystal elastomer electric locomotives[J]. ACS Macro Letters, 2020, 9(6): 860-865. [17] HECKELE M, SCHOMBURG W K. Review on micro molding of thermoplastic polymers[J]. Journal of Micromechanics and Microengineering, 2003, 14(3): R1-R14. [18] SON H, YOON C K. Advances in stimuli-responsive soft robots with integrated hybrid materials[J]. Actuators, 2020, 9(4): 115. [19] LE X, LU W, ZHANG J, et al. Recent progress in biomimetic anisotropic hydrogel actuators[J]. Advanced Science, 2019, 6(5): 1801584. [20] CHENG F, CHEN H, LI H. Recent progress on hydrogel actuators[J]. Journal of Materials Chemistry B, 2021, 9(7): 1762-1780. [21] EL-ATAB N, MISHRA R B, AL-MODAF F, et al. Soft actuators for soft robotic applications: A review[J]. Advanced Intelligent Systems, 2020, 2(10): 2000128. [22] LIU H, LIU R, CHEN K, et al. Bioinspired gradient structured soft actuators: From fabrication to application[J]. Chemical Engineering Journal, 2023, 461: 141966. [23] CHENG Z, ZHANG D, LV T, et al. Superhydrophobic shape memory polymer arrays with switchable isotropic/anisotropic wetting[J]. Advanced Functional Materials, 2018, 28(7): 1705002. [24] TANG D, ZHANG L, ZHANG X, et al. Bio-mimetic actuators of a photothermal-responsive vitrimer liquid crystal elastomer with robust, self-healing, shape memory, and reconfigurable properties[J]. ACS Applied Materials & Interfaces, 2021, 14(1): 1929-1939. [25] STOYCHEV G, RAZAVI M J, WANG X, et al. 4D origami by smart embroidery[J]. Macromolecular Rapid Communications, 2017, 38(18): 1700213. [26] IONOV L, STOYCHEV G, JEHNICHEN D, et al. Reversibly actuating solid janus polymeric fibers[J]. ACS Applied Materials & Interfaces, 2017, 9(5): 4873-4881. [27] ACIKGOZ C, HEMPENIUS M A, HUSKENS J, et al. Polymers in conventional and alternative lithography for the fabrication of nanostructures[J]. European Polymer Journal, 2011, 47(11): 2033-2052. [28] GE Q, SAKHAEI A H, LEE H, et al. Multimaterial 4D printing with tailorable shape memory polymers[J]. Scientific Reports, 2016, 6(1): 31110. [29] CHOUDHURY I A, SHIRLEY S. Laser cutting of polymeric materials: An experimental investigation[J]. Optics & Laser Technology, 2010, 42(3): 503-508. [30] LING Y, PANG W, LI X, et al. Laser-induced graphene for electrothermally controlled, mechanically guided, 3d assembly and human-soft actuators interaction[J]. Advanced Materials, 2020, 32(17): 1908475. [31] STROGANOV V, PANT J, STOYCHEV G, et al. 4D biofabrication: 3D cell patterning using shape-changing films[J]. Advanced Functional Materials, 2018, 28(11): 1706248. [32] LENDLEIN A, GOULD O E C. Reprogrammable recovery and actuation behaviour of shape-memory polymers[J]. Nature Reviews Materials, 2019, 4(2): 116-133. [33] YUE L, SUN X, YU L, et al. Cold-programmed shape-morphing structures based on grayscale digital light processing 4D printing[J]. Nature Communications, 2023, 14(1): 5519. [34] HU S, FANG Y, LIANG C, et al. Thermally trainable dual network hydrogels[J]. Nature Communications, 2023, 14(1): 3717. [35] BOBNAR M, DERETS N, UMEROVA S, et al. Polymer-dispersed liquid crystal elastomers as moldable shape-programmable material[J]. Nature Communications, 2023, 14(1): 764. [36] YANG X, CHEN Y, ZHANG X, et al. Bioinspired light-fueled water-walking soft robots based on liquid crystal network actuators with polymerizable miniaturized gold nanorods[J]. Nano Today, 2022, 43: 101419. [37] YANG Y, CAO Z, HE P, et al. Ti3C2Tx MXene-graphene composite films for wearable strain sensors featured with high sensitivity and large range of linear response[J]. Nano Energy, 2019, 66: 104134. [38] JAISWAL S, VISHWAKARMA J, BHATT S, et al. Layered titanium carbide-mediated fast shape switching and excellent thermal and electrical transport in shape-memory-polymer composites for smart technologies: MAX Versus MXene[J]. Advanced Engineering Materials, 2023, 25(17): 2300233. [39] LO C Y, ZHAO Y, KIM C, et al. Highly stretchable self-sensing actuator based on conductive photothermally-responsive hydrogel[J]. Materials Today, 2021, 50: 35-43. [40] WANG J, LIU Y, CHENG Z, et al. Highly conductive MXene film actuator based on moisture gradients[J]. Angewandte Chemie International Edition, 2020, 59(33): 14029-14033. [41] FANG L, CHEN S, FANG T, et al. Shape-memory polymer composites selectively triggered by near-infrared light of two certain wavelengths and their applications at macro-/microscale[J]. Composites Science and Technology, 2017, 138: 106-116. [42] LIU Y, ZHU G, LIU W, et al. An investigation on laser-triggered shape memory behaviors of hydro-epoxy/carbon black composites[J]. Smart Materials and Structures, 2018, 27(9): 095008. [43] SHOU Q, UTO K, IWANAGA M, et al. Near-infrared light-responsive shape-memory poly (ε-caprolactone) films that actuate in physiological temperature range[J]. Polymer Journal, 2014, 46(8): 492-498. [44] TONCHEVA A, KHELIFA F, PAINT Y, et al. Fast IR-actuated shape-memory polymers using in situ silver nanoparticle-grafted cellulose nanocrystals[J]. ACS Applied Materials & Interfaces, 2018, 10(35): 29933-29942. [45] CHEN J, ZHU Z, ZHANG H, et al. Superhydrophobic light-driven actuator based on self-densified wood film with a sandwich-like structure[J]. Composites Science and Technology, 2022, 220: 109278. [46] BAI Y, ZHANG J, WEN D, et al. Fabrication of remote controllable devices with multistage responsiveness based on a NIR light-induced shape memory ionomer containing various bridge ions[J]. Journal of Materials Chemistry A, 2019, 7(36): 20723-20732. [47] YI D H, YOO H J, MAHAPATRA S S, et al. The synergistic effect of the combined thin multi-walled carbon nanotubes and reduced graphene oxides on photothermally actuated shape memory polyurethane composites[J]. Journal of Colloid and Interface Science, 2014, 432: 128-134. [48] AHIR S V, TERENTJEV E M. Photomechanical actuation in polymer-nanotube composites[J]. Nature Materials, 2005, 4(6): 491-495. [49] LU H, YAO Y, HUANG W M, et al. Significantly improving infrared light-induced shape recovery behavior of shape memory polymeric nanocomposite via a synergistic effect of carbon nanotube and boron nitride[J]. Composites Part B: Engineering, 2014, 62: 256-261. [50] PRASOMSIN W, PARNKLANG T, SAPCHAROENKUN C, et al. Multiwalled carbon nanotube reinforced bio-based benzoxazine/epoxy composites with NIR-laser stimulated shape memory effects[J]. Nanomaterials, 2019, 9(6): 881. [51] CHO J W, KIM J W, JUNG Y C, et al. Electroactive shape-memory polyurethane composites incorporating carbon nanotubes[J]. Macromolecular Rapid Communications, 2005, 26(5): 412-416. [52] ZHOU G, ZHANG H, XU S, et al. Fast triggering of shape memory polymers using an embedded carbon nanotube sponge network[J]. Scientific Reports, 2016, 6(1): 24148. [53] LI H, ZHONG J, MENG J, et al. The reinforcement efficiency of carbon nanotubes/shape memory polymer nanocomposites[J]. Composites Part B: Engineering, 2013, 44(1): 508-516. [54] NI Q Q, ZHANG C, FU Y, et al. Shape memory effect and mechanical properties of carbon nanotube/shape memory polymer nanocomposites[J]. Composite Structures, 2007, 81(2): 176-184. [55] ZHANG J, SUN D, ZHANG B, et al. Intrinsic carbon nanotube liquid crystalline elastomer photoactuators for high-definition biomechanics[J]. Materials Horizons, 2022, 9(3): 1045-1056. [56] LIU Q, HE X, PENG J, et al. Hot-electron-assisted S-scheme heterojunction of tungsten oxide/graphitic carbon nitride for broad-spectrum photocatalytic H2 generation[J]. Chinese Journal of Catalysis, 2021, 42(9): 1478-1487. [57] TAYYAB M, LIU Y, MIN S, et al. Simultaneous hydrogen production with the selective oxidation of benzyl alcohol to benzaldehyde by a noble-metal-free photocatalyst VC/CdS nanowires[J]. Chinese Journal of Catalysis, 2022, 43(4): 1165-1175. [58] ZHOU Y, TAN J, CHONG D, et al. Rapid near-infrared light responsive shape memory polymer hybrids and novel chiral actuators based on photothermal W18O49 nanowires[J]. Advanced Functional Materials, 2019, 29(33): 1901202. [59] HOANG A T, HU L, KATIYAR A K, et al. Two-dimensional layered materials and heterostructures for flexible electronics[J]. Matter, 2022, 5(12): 4116-4132. [60] ROSALES C A G, DUARTE M F G, KIM H, et al. 3D printing of shape memory polymer (SMP)/carbon black (CB) nanocomposites with electro-responsive toughness enhancement[J]. Materials Research Express, 2018, 5(6): 065704. [61] TANG Z, KANG H, WEI Q, et al. Incorporation of graphene into polyester/carbon nanofibers composites for better multi-stimuli responsive shape memory performances[J]. Carbon, 2013, 64: 487-498. [62] KERAMATI M, GHASEMI I, KARRABI M, et al. Dispersion of graphene nanoplatelets in polylactic acid with the aid of a zwitterionic surfactant: Evaluation of the shape memory behavior[J]. Polymer-Plastics Technology and Engineering, 2016, 55(10): 1039-1047. [63] DONG Y, WANG L, XIA N, et al. Multi-stimuli-response programmable soft actuators with site-specific and anisotropic deformation behavior[J]. Nano Energy, 2021, 88: 106254. [64] ZHANG X, TIAN M, RAZA T, et al. Soft robotic reinforced by carbon fiber skeleton with large deformation and enhanced blocking forces[J]. Composites Part B: Engineering, 2021, 223: 109099. [65] XIANG Y, LI B, LI B, et al. Toward a multifunctional light-driven biomimetic mudskipper-like robot for various application scenarios[J]. ACS Applied Materials & Interfaces, 2022, 14(17): 20291-20302. [66] XU L, ZHENG H, XUE F, et al. Bioinspired multi-stimulus responsive MXene-based soft actuator with self-sensing function and various biomimetic locomotion[J]. Chemical Engineering Journal, 2023, 463: 142392. [67] LI P, SU N, WANG Z, et al. A Ti3C2Tx MXene-based energy-harvesting soft actuator with self-powered humidity sensing and real-time motion tracking capability[J]. ACS Nano, 2021, 15(10): 16811-16818. [68] ZHANG D, YANG K, LIU X, et al. Boosting the photothermal conversion efficiency of MXene film by porous wood for Light-driven soft actuators[J]. Chemical Engineering Journal, 2022, 450: 138013. [69] SHI X, ZUO Y, ZHAI P, et al. Large-area display textiles integrated with functional systems[J]. Nature, 2021, 591(7849): 240-245. [70] XIONG J, CHEN J, LEE P S. Functional fibers and fabrics for soft robotics, wearables, and human-robot interface[J]. Advanced Materials, 2021, 33(19): 2002640. [71] HUANG Y, JIANG J, LI J, et al. Light-driven Bi-stable actuator with oriented polyimide fiber reinforced structure[J]. Composites Communications, 2022, 31: 101128. [72] ZHANG D, LIU L, LAN X, et al. Synchronous deployed design concept triggered by carbon fibre reinforced shape memory polymer composites[J]. Composite Structures, 2022, 290: 115513. [73] JOHANNISSON W, HARNDEN R, ZENKERT D, et al. Shape-morphing carbon fiber composite using electrochemical actuation[J]. Proceedings of the National Academy of Sciences, 2020, 117(14): 7658-7664. [74] VIGO T L. Textile processing and properties: Preparation, dyeing, finishing and performance[M]. Elsevier, 2013. [75] YANG Y, WANG H, ZHANG S, et al. Vitrimer-based soft actuators with multiple responsiveness and self-healing ability triggered by multiple stimuli[J]. Matter, 2021, 4(10): 3354-3365. [76] YANG C, WANG B, ZHONG S, et al. On tailoring deployable mechanism of a bistable composite tape-spring structure[J]. Composites Communications, 2022, 32: 101171. [77] HE Y, ZHAO X Y, RAO P, et al. Saline tolerant tough-yet-strong fiber-reinforced gel-nacre for soft actuator[J]. Chemical Engineering Journal, 2022, 446: 137091. [78] APSITE I, SALEHI S, IONOV L. Materials for smart soft actuator systems[J]. Chemical Reviews, 2021, 122(1): 1349-1415. [79] KUO J C, HUANG H W, TUNG S W, et al. A hydrogel-based intravascular microgripper manipulated using magnetic fields[J]. Sensors and Actuators A: Physical, 2014, 211: 121-130. [80] GULTEPE E, RANDHAWA J S, KADAM S, et al. Biopsy with thermally-responsive untethered microtools[J]. Advanced Materials, 2013, 25(4): 514-519. [81] ALAPAN Y, YASA O, SCHAUER O, et al. Soft erythrocyte-based bacterial microswimmers for cargo delivery[J]. Science Robotics, 2018, 3(17): eaar4423. [82] BLEES M K, BARNARD A W, ROSE P A, et al. Graphene kirigami[J]. Nature, 2015, 524(7564): 204-207. [83] WANG H, ZHEN H, LI S, et al. Self-rolling and light-trapping in flexible quantum well-embedded nanomembranes for wide-angle infrared photodetectors[J]. Science Advances, 2016, 2(8): e1600027. [84] GABLER F, KARNAUSHENKO D D, KARNAUSHENKO D, et al. Magnetic origami creates high performance micro devices[J]. Nature Communications, 2019, 10(1): 3013. [85] ZOU W, JIN B, WU Y, et al. Light-triggered topological programmability in a dynamic covalent polymer network[J]. Science Advances, 2020, 6(13): eaaz2362. [86] VAN MANEN T, JANBAZ S, GANJIAN M, et al. Kirigami-enabled self-folding origami[J]. Materials Today, 2020, 32: 59-67. [87] ZHANG D, LIU L, XU P, et al. World’s first application of a self-deployable mechanism based on shape memory polymer composites in Mars explorations: Ground-based validation and on-Mars qualification[J]. Smart Materials and Structures, 2022, 31(11): 115008. |
[1] | 张燚聪, 陈建稳. PVDF膜材双轴全域拉伸非线性及力学参数研究[J]. 复合材料科学与工程, 2024, 0(4): 5-13. |
[2] | 汪瑞, 梅启林, 丁国民, 陈述慧, 徐建蓉, 姜端洋. 褶皱石墨烯微球制备与浸润性调控及其丙酮感知研究[J]. 复合材料科学与工程, 2024, 0(4): 14-19. |
[3] | 马世恒, 葛敬冉, 刘凯, 李永善, 梁军. 玻璃纤维/环氧树脂预浸料固化全过程的比热容和热导率研究[J]. 复合材料科学与工程, 2024, 0(4): 20-25. |
[4] | 曾塘玉, 马传国, 向阳, 邵士磊. BN粒子改性PVDF电纺纤维膜插层增强碳纤维/环氧树脂复合材料层间韧性[J]. 复合材料科学与工程, 2024, 0(4): 26-32. |
[5] | 武顺心, 朱水文. 基于改进的Halpin-Tsai模型对颗粒增强复合材料弹性常数预测[J]. 复合材料科学与工程, 2024, 0(4): 33-39. |
[6] | 李红军, 韩杨, 宋笑非, 郑绍文, 郑超凡, 孙九霄. 孔柱锥度对纤维柱增强夹芯结构压缩性能的影响[J]. 复合材料科学与工程, 2024, 0(4): 40-48. |
[7] | 刘冠三, 孙士勇, 马鑫, 韩晓缠. 基于激光加热的CF/PEEK复合材料层合板铺放工艺研究[J]. 复合材料科学与工程, 2024, 0(4): 49-55. |
[8] | 刘峰, 乔宇, 李雪江, 豆广征. 轻木夹芯/碳纤维复合材料结构后推构型无人机机身设计与分析[J]. 复合材料科学与工程, 2024, 0(4): 56-62. |
[9] | 田潇, 文立伟, 邓朱海. 缝合增强PRSEUS构件低速冲击性能研究[J]. 复合材料科学与工程, 2024, 0(4): 63-75. |
[10] | 梁桂龙, 丛庆, 李旭, 王继辉. 混杂纤维复合材料螺旋桨的铺层结构设计与模压成型工艺[J]. 复合材料科学与工程, 2024, 0(4): 83-89. |
[11] | 张恒, 方海, 王肖淳, 夏国龙, 徐双. 小角度缠绕复合材料护岸管桩抗弯性能试验与设计[J]. 复合材料科学与工程, 2024, 0(4): 90-96. |
[12] | 桂林景, 张世广, 李皓, 王安康, 梁鑫河, 夏岩峰, 刘佳. 复合材料过盈铆接结构吸湿老化行为研究[J]. 复合材料科学与工程, 2024, 0(4): 97-104. |
[13] | 王浩东, 侯增选, 张伟超, 罗洋洋, 李彦良, 戚厚良. 基于蚁群算法的绝热层缠绕路径优化[J]. 复合材料科学与工程, 2024, 0(4): 105-110. |
[14] | 周欣康, 位浩杰, 陈晓龙, 王佳鑫, 卢大伟, 谢辉. 刀具磨损因素分析及对CFRP制孔质量的影响[J]. 复合材料科学与工程, 2024, 0(4): 111-116. |
[15] | 王孟, 刘程, 张玉, 贾航, 乔越, 蹇锡高. 成型温度对CF/PPEK复合材料的缺陷和力学性能影响[J]. 复合材料科学与工程, 2024, 0(3): 5-12. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||