[1] 杜善义, 关志东. 我国大型客机先进复合材料技术应对策略思考[J]. 复合材料学报, 2008(1): 1-10. [2] 宁莉, 杨绍昌, 冷悦, 等. 先进复合材料在飞机上的应用及其制造技术发展概述[J]. 复合材料科学与工程, 2020(5): 122-128. [3] 马立敏, 张嘉振, 岳广全, 等. 复合材料在新一代大型民用飞机中的应用[J]. 复合材料学报, 2015, 32(2): 317-322. [4] ARISTA R, FALGARONE H. Flexible best fit assembly of large aircraft components. Airbus A350 XWB case study[C]//Product Lifecycle Management and the Industry of the Future: 14th IFIP WG 5.1 International Conference. Spring International Publishing, 2017: 152-161. [5] 王华. 飞机先进复合材料结构装配协调技术研究现状与发展趋势[J]. 航空制造技术, 2018, 61(7): 26-33. [6] SÖDERBERG R, WÄRMEFJORD K, LINDKVIST L. Variation simulation of stress during assembly of composite parts[J]. CIRP Annals-Manufacturing Technology, 2015, 64(1): 17-20. [7] 黎雪婷, 安鲁陵, 岳烜德, 等. 飞机复合材料壁板装配中临时紧固件数量与布局优化方法[J]. 复合材料学报, 2022, 39(8): 4102-4116. [8] 丁安心, 王继辉, 倪爱清, 等. 热固性树脂基复合材料固化变形解析预测研究进展[J]. 复合材料学报, 2018, 35(6): 1361-1376. [9] WU F, LI D, DU B. Optimal assembly of a skin panel onto the fuselage framework based on force control technology[J]. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2016, 230(6): 447-451. [10] 李东升, 杨应科, 翟雨农, 等. 民用飞机复合材料机身壁板装配协调形性调控技术研究[J]. 复合材料学报, 2022, 39(9): 4310-4318. [11] LIU C, HONG J, WANG S. Multi-point positioning method for flexible tooling system in aircraft manufacturing[C]//Proceedings of the ASME 2012 International Mechanical Engineering Congress and Exposition. 2012: 113-117. [12] 刘玉松, 王志海, 刘琦, 等. 基于Metrascan与激光雷达融合的飞机外形数字化测量方法研究[J]. 现代制造工程, 2019(2): 36-40, 47. [13] 张秋月. 飞机复合材料结构装配压紧力大小与布局的优化[D]. 南京: 南京航空航天大学, 2019. [14] 金涛, 陈建良, 童水光. 逆向工程技术研究进展[J]. 中国机械工程, 2002(16): 86-92. [15] 刘杰. 基于Geomagic逆向工程软件的机械零件建模与分析[D]. 石家庄: 河北科技大学, 2022. [16] 赖啸, 郭晟. 基于Geomagic DesignX的门把手反求设计与加工[J]. 机械工程师, 2017(4): 64-66. [17] WANG H, WANG H L. Numerical and experimental investigation of bulk stress distribution in edge under different clamping sequence[J]. Assembly Automation, 2019, 39(4): 523-531. [18] WANG H, GAO X. Auto body taillight assembly modeling and fitting variation induced by tighten-up sequence analyzing[J]. Assembly Automation, 2013, 33(2): 149-156. [19] LIU X, AN L L, WANG Z G, et al. Assembly variation analysis of aircraft panels under part-to-part locating scheme[J]. International Journal of Aerospace Engineering, 2019(36): 1-15. [20] ANDREA C, WILMA P, GILLO G. Super element method applied to MIC to reduce simulation time of compliant assemblies[J]. International Journal of Computer Applications in Technology, 2019, 59(4): 277-287. [21] YUE X D, AN L L, CHEN Z T, et al. Influence of gap filling on mechanical properties of composite-aluminum single-lap single-bolt hybrid joints[J]. Advances in Mechanical Engineering, 2021, 13(2): 20-24. [22] 陶翀骢. 复合材料层合板损伤检测及其剩余力学性能预测[D]. 南京: 南京航空航天大学, 2018. [23] 李彬. 水下航行器复合材料耐压壳优化设计方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2019. [24] 张秋月, 安鲁陵, 岳烜德, 等. 基于遗传算法的飞机复合材料结构装配压紧力大小与布局的优化[J]. 复合材料学报, 2019, 36(6): 1546-1557. [25] YUE X D, AN L L, CHEN Z T, et al. Influence of gap filling on mechanical properties of composite-aluminum single-lap single-bolt hybrid joints[J]. Advances in Mechanical Engineering, 2021, 13(2): 20-24. [26] YANG D, QU W W, KE Y L. Evaluation of residual clearance after pre-joining and pre-joining scheme optimization in aircraft panel assembly[J]. Assembly Automation, 2016, 36(4): 376-387. [27] 杨迪. 飞机壁板自动钻铆中预连接工艺和铆接变形研究[D]. 杭州: 浙江大学, 2019. [28] 卢贤刚. 预连接工艺对壁板装配静动态性能影响分析[D]. 杭州: 浙江大学, 2016. [29] LUPULEAC S, SMIRNOV A, CHURILOVA M, et al. Simulation of body force on the assembly process of aircraftparts[C]//Proceedings of the ASME 2019 International Mechanical Engineering Congress and Exposition. Salt Lake City: ASME 2019 International Mechanical Engineering Congress and Exposition, 2019. [30] 李西宁, 王悦舜, 周新房. 复合材料层合板分层损伤数值模拟方法研究现状[J]. 复合材料学报, 2021, 38(4): 1076-1086. [31] 董秀军. 三维激光扫描技术及其工程应用研究[D]. 成都: 成都理工大学, 2007. |